宇宙吧 关注:761,360贴子:6,278,654

回复:让我们来了解宇宙中的天体

只看楼主收藏回复


中子星是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一,质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体,其密度比地球上任何物质密度大相当多倍。绝大多数的脉冲星都是中子星,但中子星不一定是脉冲星,有脉冲才算是脉冲星。 面积300平方km 逃逸速度在10,000至150,000千米/秒之间 意义黑洞外密度最大的星体(已观测)表面温度超过1000万摄氏度内部温度超过60亿摄氏度半径10—30公里


17楼2017-11-29 00:23
回复

    脉冲星 脉冲星,就是旋转的中子星。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有 一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。实 质旋转的中子星 名称由来不断地发出电磁脉冲信号


    18楼2017-11-29 00:24
    回复

      原生黑洞又称太初黑洞或者是强黑洞)是科学家们提出的一种假说中的黑洞。他们认为在宇宙大爆炸时,其异乎寻常的力量把一些物质挤压得非常紧密,形成了“原生黑洞”。这种另类黑洞并不是由恒星坍塌而形成的。理论上,原生黑洞比起普通黑洞可以更小,甚至小到肉眼无法辨别的大小。例如存在体积只有原子大小,质量却相当于一座山(大于10亿吨)的原生黑洞。


      19楼2017-11-29 00:26
      收起回复

        HD 140283 HD 140283恒星是大爆炸之后首批诞生的恒星,是宇宙中最古老的已知恒星,并且能很好地确定其形成年代但这颗恒星已经烧尽其内核,气体冷却时间只有数千年了 该恒星早在一个世纪前就发现了 ,但霍华德·邦德在宾夕法尼亚州立大学于2003年至2010年期间使用哈勃望远镜发现HD 140283恒星距离地球190.1光年,其真实年龄为139亿年,但是此类计划通常包含着大量的误差范围。对于HD 140283恒星而言,其年龄测定误差范围为8亿年,也就是它至少拥有132亿年历史(图片不是恒星)


        20楼2017-11-29 00:29
        收起回复
          给精了


          IP属地:甘肃来自Android客户端21楼2017-11-29 00:29
          收起回复

            贫血星系 贫血星系是一种罕见的旋涡星系,由于该星系几乎不诞生新恒星,因此呈现出可怕的半透明状态。被科学家形象地描述为“贫血”星系。


            22楼2017-11-29 00:35
            收起回复

              谷神星是太阳系中最小的、也是唯一位于小行星带的矮行星。由意大利天文学家皮亚齐发现,并于1801年1月1日公布。2006年,国际天文学联合会将谷神星重新定义为矮行星,谷神星曾被认为是太阳系已知最大的小行星。谷神星很可能是一个分化型星球,具有岩石内核,地幔层包含大量冰水物质,现探测到星球表面有大量载水矿物质。初步推测水占谷神星体积的40%。谷神星还能通过太阳能获得能量,因为它距离太阳仅2.8个天文单位,相比之下,木卫二和土卫二一距离较远,分别是5.2和9个天文单位。


              23楼2017-11-29 00:36
              收起回复

                柯伊伯带 柯伊伯带是太阳系在海王星轨道(距离太阳约30天文单位)外黄道面附近、天体密集的中空圆盘状区域。柯伊伯带的假说最初是由爱尔兰裔天文学家艾吉沃斯提出,杰拉德·柯伊伯(GPK)发展了该观点。 柯伊伯带有时被误认为是太阳系的边界,但太阳系还包括向外延伸两光年之远的奥尔特星云。早在上世纪50年代,柯伊伯和埃吉沃斯(Edgeworth)就预言:在海王星轨道以外的太阳系边缘地带,充满了微小冰封的物体,它们是原始太阳星云的残留物,也是短周期彗星的来源地。1992年,人们找到了第一个柯伊伯带天体(KBO);如今已有约1000个柯伊伯带天体被发现,直径从数千米到上千公里不等。许多天文学家认为:由于冥王星的个头和柯伊伯带中的小行星大小相当,所以冥王星应该被排除在太阳系行星之外,而归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被视作其伴星。不过,因冥王星是在柯伊伯带理论出现之前被发现的,所以传统上仍被认为是行星。2006年,在布拉格召开的第26届国际天文学联合会(IAU)会议上以表决的方式通过决议,剥夺了冥王星作为太阳系大行星的地位,将其降为矮行星。无论如何,柯伊伯带的存在现已是公认的事实,但柯伊伯带为什么会存在着种种疑问成为太阳系形成理论的许多未解谜团的一部分。在距离太阳40~50个天文单位的位置,低倾角的轨道上,过去一直被认为是一片空虚,太阳系的尽头所在。但事实上这里满布着大大小小的冰封物体,热闹无比,就是柯伊伯带。柯伊伯带上的这些物体是怎么成形的呢?如果按照行星形成的吸积理论来解释,那就是他们在绕日运动的过程中发生碰撞,互相吸引,最后粘附成一个个大小不一的天体,形成的样子。为解开这个谜团,陆续有几个理论出现,可惜它们都有些明显限制。如今,美国西南研究院(SwRI,Southwest Research Institute)的Harold Levison教授以及法国de la Cote d'Azur天文台的Alessandro Morbidelli教授共同提出了一个理论,认为柯伊伯带天体是在距离太阳更近位置成形后,又被海王星一个个甩出去的,所以躲开了柯伊伯带总质量不足的问题。


                24楼2017-11-29 00:37
                收起回复

                  奥尔特云 是一个假设包围着太阳系的球体云团,布满着不少不活跃的彗星,距离太阳约50,000至100,000个天文单位,最大半径差不多一光年,即太阳与比邻星距离的四分之一。天文学家普遍认为奥尔特云是50亿年前形成太阳及其行星的星云之残余物质,并包围着太阳系。


                  25楼2017-11-29 00:38
                  收起回复

                    本星系群 本星系群(Local Group of Galaxies)是包括银河系在内的一群星系。这组星系群包含大约超过50个星系,其中心位于银河系和仙女座星系中的某处。 本星系群中的全部星系覆盖一块直径大约1000万光年的区域。本星系群又属于范围更大的室女座超星系团。是一个典型的疏散星系团,没有明显的向中心聚集的趋势。成员星系50个 银河系和仙女星系是本星系群成员星系中最大的两个,它们大体上位于本星系群的中心。除银河系和仙女星系外,绝大部分成员星系是矮星系。本星系群的半径约 1百万秒差距,质量约 6.5×10^11 太阳质量,其中的绝大部分集中在银河系和仙女星系。群内的气体不多,约占总质量的2%。


                    26楼2017-11-29 00:42
                    收起回复


                      来自iPhone客户端27楼2017-11-29 13:54
                      收起回复
                        目前在找资料 怕有些资料是错的所以要排除


                        28楼2017-11-30 10:57
                        回复
                          生蜘蛛网了 速度哈


                          来自Android客户端29楼2017-11-30 17:09
                          收起回复
                            补充楼主的s50014+81并非黑洞而是类星体


                            30楼2017-11-30 23:42
                            收起回复
                              S5 0014+81 (From Wikipedia, the free encyclopedia)
                              S5 0014+81 is a distant, compact, hyperluminous, broad-absorption line quasar or blazar located near the high declination region of the constellation Cepheus, near the North Equatorial Pole.
                              Characteristics
                              The object is a blazar, in fact an OVV (optically violent variable) quasar, the most energetic subclass of objects known as active galactic nuclei, produced by the rapid accretion of matter by a central supermassive black hole, changing the gravitational energy to light energy that can be visible at cosmic distances. In the case of S5 0014+81 it is one of the most luminous quasars known, with a total luminosity of over 1041 watts,[2] equal to an absolute bolometric magnitude of -31.5. If the quasar were at a distance of 280 light-years from Earth, it would give as much energy per square meter as the Sun despite being 18 million times more distant.[clarification needed] The quasar's luminosity is therefore about 3 x 1014 (300 trillion) times the Sun,[3] or over 25,000 times as luminous as all the 100 to 400 billion stars of the Milky Way Galaxy combined,[4] making it one of the most powerful objects in the observable universe. However, because of its huge distance of 12.1 billion light-years it can only be studied by spectroscopy. The central black hole of the quasar devours an extremely huge amount of matter, equivalent to 4,000 solar masses of material every year.
                              The quasar is also a very strong source of radiation, from gamma-rays and X-rays down to radio waves. The quasar is located at a distance where the observed redshift of quasars and stars are extremely similar, making the two objects difficult to distinguish using the standard spectroscopic redshift and the photometric redshift determination, and hence must be treated by other special techniques to successfully determine the nature of the object.
                              The quasar's designation, S5, is from the Fifth Survey of Strong Radio Sources, 0014+81 was its coordinates in epoch B1950.0. It also has the other designation 6C B0014+8120,[1] from the Sixth Cambridge Survey of radio sources by Cambridge University.
                              The host galaxy of S5 0014+81 is a giant elliptical starburst galaxy, with the apparent magnitude of 24.[citation needed]
                              Supermassive black hole
                              The host galaxy of S5 0014+81 is an FSRQ blazar, a giant elliptical galaxy that hosts a supermassive black hole in its center, which may be responsible for the intense activity of this blazar.
                              In 2009, a team of astronomers using the Swift Spacecraft used the luminosity output of S5 0014+81 to measure the mass of the central black hole. To their surprise, they found out that the central black hole of S5 0014+81 is actually 10,000 times more massive than the black hole at the center of our galaxy, or equivalent to 40 billion solar masses.[5] This makes it one of the most massive black holes ever discovered, more than six times the value of the black hole of Messier 87, which was thought to be the largest black hole for almost 60 years, and was coined to be an "ultramassive" black hole. The Schwarzschild radius of this black hole is 118.35 billion kilometers. So, this black hole has an external horizon showing a diameter of 236.7 billion kilometers, 1,600 astronomical units, or about 40 times the radius of Pluto's orbit, and shows a mass equivalent to four Large Magellanic Clouds. What is even more astounding is that the monstrous black hole exists so early in the universe, at only 1.6 billion years after the Big Bang. This suggests that supermassive black holes grew up very quickly.
                              However, there are some cautions about the study. First, the method used was actually an indirect method of calculation, and not Keplerian orbital estimation; the latter being a more precise estimate. It is unlikely for a quasar as luminous as S5 0014+81, which will just outshine the stars within its vicinity, thereby making estimates very inaccurate. Second, the spectrum used is actually a long spectrum, not accounting for the observed parameters. Third, the quasar is surrounded by a large accretion disc, a few parsecs in size, and it shines at 40% of its Eddington luminosity, the maximum luminosity through which radiation pressure is strong enough to blow up the disc away from the gravitational influence of the central black hole, so the observed characteristics are unknown due to intervening dust and gases. However, the possibility of an ultramassive black hole has not been ruled out entirely, since only a black hole of that mass can account for the observed power output of the quasar.
                              Evolution models based on the mass of S5 0014+81's supermassive black hole predict that it will live for roughly 1.342×1099 years (near the end of the Black Hole Era of the Universe, when it is more than 1088times its current age), before it dissipates by the Hawking radiation.[6] However, it is undergoing accretion, so it may take longer than the stated time for it to dissipate.


                              31楼2017-11-30 23:46
                              收起回复