2012吧 关注:1,626,547贴子:87,748,672

回复:求教一个数学问题

取消只看楼主收藏回复

回到,
e=lim(1+1/n)^n
n->inf
这里就已经有了
lim (1/n)
n->inf
这种东西,也就是上面始终在说的无穷小。
当我们写
y=e^(bi)的时候,我们允许了i没有确定值,可是这个没有确定值的东西最后要算出结果来只有两个选择:一个是把
它确定了,一个是把它消掉了,那就不用确定了。而考虑到无穷小和i的关系,实际上我们可以根本不用把它求出来,因为可以消掉。i存在于指数上,这需要e的表达式中含有可以消去i的另一个i存在,而它真的存在,它就是
lim (1/n) = 1/i
n->inf
选择1/i而不是1/(i+1/i),表达的是这个增量最终还不是0,也就是说,最小是网孔大小,没有漏出去。
如果里面的n=i,外面的n也只能等于i,结果就是
e=lim(1+1/n)^n = (1+1/i)^i
n->inf
去掉极限写法的这半边,得到
e=(1+1/i)^i
因为复数和微积分的鸿沟已经填上了,极限算符已经不需要了。
而且你已经可以清楚的知道,只要i获得一个实数值,那么对应的e,就可以取得。
什么意思呢?
i是一个变量,一个变量也可以是一个函数,也就是y=i,
e原来认为是一个常数,但是这时候它完全由变量运算的结果而决定,那么这时候,它就不是常数了,
它就是函数了。也就是,
e=f(i)=(1+1/i)^i
换句话说,你就得到了关于e的配方(配方这个词和公式这个词的英文是一样的)。
你可以做出一个你想要的e来。
那么关于e这种材料该怎么做,就清楚了。而且你也知道,它到底是什么意思。
回到y=e^(bi),
y=e^(bi) = (1+1/i)^(i*bi)
这个得做一下换元处理,把i还是当做n,不要去考虑平方是否等于-1的问题,你将会得到
y=e^(bi)=(1+b)^i
i最终还是会得到一个值,b也是一个实数,所以再一次,带有虚数次方和自然对数的表达式,被化简为
只有虚数次方没有自然对数的表达式,显然后者更简单,意思也更明确。
写到这里,似乎也没有说明什么,那么再配合
e^(Pi*i)+1 = 0
处理一下:
e^(Pi*i)=-1
e^(Pi/2 * i ) = i
也就是e的二分之一派乘以i次方,等于i。
带入y=e^(bi)=(1+b)^i
结果就是
(1+Pi/2)^i = i
既然从算利率开始,我们就在用次方来代表一种增量形式(这个和x的平方不同,也就是指数函数和幂函数不同),
那么i次方意思也是i次增长。
仍然是从1开始,1经过了利率为Pi/2 的i次增长的结果就是i。
写到这里,i实际上应可以算出值来了。
有趣的是,这个值还含有i,也是一个复数,有兴趣的话可以用Mathmatica算一下(机器并未给出计算过程,
所以我也没有什么可写的东西)。
更进一步计算也是可行的,得到的是i=1(因为机器计算得到有限结果,所以用机器计算的结果只是极其接近1)。
把i=1再带回来,
(1+Pi/2)^i = i
(1+Pi/2)^1=1
那么只有Pi/2=0了。
所以到这里,希望你已经明白的是,不只是i这样一个变量是变量,e也是变量(函数),实际上派,也是变量,至少它可以取一个不是3.1415926...的值。
从某种程度上将,物理学可以认为是具有一组特定常数的数学系统,而这一组特定常数,就是那些目前为止,我们只能测量,不能改变的物理量。换句话说,这些常数如此取值并如此组合,就定义了我们的物理实相,或者世界。如果有另一套取值,另一种组合,就可以定义另一个具有相似规律的物理实相或者世界。所以通过寻求物理常数
的改变的方法,就能找到构造物理实相的方法或者解决物理问题的钥匙。所以若要解决光速的问题,就要从
构成光速的磁导率和介电常数下手,如果两者能变,且乘积也变了,那光速,至少其数值就变了。不要认为
爱因斯坦的脑袋是榆木疙瘩,相反,他是脑袋最灵活的人。他后半生一直在寻求光速可变的原理或者方法,
所以请不要说,爱因斯坦说了:光速不能变。不是他不希望光速变化,而是他不知道光速如何变化,或者光速
变化是什么意思。
冒出这一段话来,在于:数学常数都变成了变量和函数,那么物理常数呢?真的不能变么?


IP属地:海南137楼2018-02-19 23:14
回复
    在走到下一步讨论Pi/2之前,我们继续观察e和i的关系:
    对于e的配方:
    e=(1+1/i)^i
    当i=1的时候,e=2,这就是1年一次100%利率的情况。
    当i=2的时候,e=2.25,这就是1年一次50%利率的情况。
    这和最开始导出e的过程完全一样。
    需要说明的是,i是作为周期(周期-1)而出现的,
    所以要用这种表达式,要知道i是周期的含义。也就是最开始说的,
    所有的事情都发生在一年之中。这是一个约束条件。
    对于能够测量出的不同周期i,也就确实应该定义这些不同的e。
    你可能经常会在物理公式里面看到Pi和e,它们和某些常数相除,
    那实际上就是在那个地方应该用一个符合那个地方的Pi和e,
    就像2和2.25的这两个e,而因为不知道这一点,只能通过其他常数
    将2.71828...的这种e调整到那个数值上。这意味着,尤其是在微观,
    量子层面上,不连续才是常态,宏观的连续性是不能照搬照抄的。
    那么i要是等于0呢?
    e=(1+1/i)^i = (1+1/0)^0
    任何数的0次方都等于1,但这里还是出了一个1/0,这个值应该是多大呢?
    只能回到最初的语境:1块钱存入银行,经过了0年之后,是多少钱。
    显然,不管利息是多少钱,时间没有进展,就不能算利息。所以这个0的位置上可以是任意值。
    当然0也可以。而利息也是任意值,因为任意值都不能使得0时间之后钱数有所改变。
    所以这就成了,任意值a和0和1的关系:
    a*0=1
    或者1/0=a,a就是任意值。
    这就解释了0不能做除数的原因,至少在这个语境下是如此:0做除数无法得到确定值。


    IP属地:海南138楼2018-02-19 23:35
    回复
      在“任意个0都等于1”的方程中,0只能以周期开始理解,不能以漏出网孔理解。
      而从这个角度来说,对于e的配方带入i=0,不是一个好选择。
      另外i等于0,则意味着只有圈没有叉的图表,或者意味着恒常结果,这都是定义的边界情况,
      或者出问题的地方,所以应当避免。


      IP属地:海南139楼2018-02-19 23:46
      回复
        你知道上帝方程来自于欧拉公式,
        e^ti = cos(t) + i sin(t)
        当t=Pi/2的时候,就得到上帝方程。
        而右面的cos和sin正好画出了复平面上的一个圆,相信你已发现,e和i的内在关系,是能够导出Pi的定义的。
        什么意思?意思就是:不需要几何,就使用复数,就可以导出几何。数量可以对应几何中的长度,而复数中的角度
        可以导出几何中的角度。虽然最开始,像派这样的常量是从几何测量而来的,但是在完全没有几何图像的前提下
        也可以导出这些数值的话,我们实际上就可以通过复数来创造几何了。
        为什么要这么做呢?
        什么叫做宇宙呢?所谓宇宙,就是空间和时间。
        你要创造一个事物,意思就是,通过你的行为,使得它从没有,变成有。
        那么,你若要创造的是宇宙呢?意思就是,通过你的行为,使得时间和空间,都从没有,变成有。
        换句话说,如果你假定时间和空间都是预先存在的,那就没有所谓创造宇宙这个概念了。
        不过宇宙大爆炸学说否定了这一点:不管它是不是被创造的,在它的开端之前,没有时间,也没有空间。
        没有时间和没有空间,不是说时间是0,空间是0,而是没有时间这种东西,和空间这种东西。
        时间暂且不考虑,只考虑空间:空间这种东西,不是本来就有的。如果它是本来就有的,那么恐怕我们真的
        只能接受,无法改变了。但现实是:在狭义相对论中,相对速度的存在导致了长度和时间都可以改变。
        也就是说,改变是可能的,或者更进一步的说,它们不是本来就有的。


        IP属地:海南140楼2018-02-19 23:57
        回复
          一个稳定存在的几何图形是如何产生的呢?
          显示在屏幕上的这种几何图形的产生方式,是一种障眼法:人的眼睛把像素发出的光连接在一起,形成了几何图形。所以这种产生图形的方式,并不实在。
          比较实在的方式,是你亲手用铅笔画图形。画图形的结果,是它的稳定存在,而它能稳定存在,需要的是你的画的过程。换句话说,过程决定了结果。
          要制造一个圆盘怎么制造呢?怎么才能保证它圆呢?你得让什么东西转起来。换句话说,圆周运动的过程导致了圆盘的产生。
          几何图形也好,现实中的具有特定形状的物体也好,都是几何可以描述的东西,平面几何,空间几何,解析几何,
          还是黎曼几何等等更高级的几何。这些几何描述的结果,其来源,都是不同的运动过程。
          若一个工具可以描述运动过程,或者更进一步说,变化过程,那么它所描述的过程,产生的结果,就可以用几何
          来描述。也就是说,这个工具,可以导出几何来。
          这么说又抽象了,回归具象:
          复数方程,e^ti = cos(t) + i sin(t)
          可以说,描述了一个在复平面上画圆(实际上是螺旋线被压扁了)的过程。
          经过这个过程,结果就是画出一个圆,而这个圆可以被几何学描述。
          那么我们就可以说,
          复数可以导出几何,或者创造几何。
          强调复数导出几何有什么特别意义么?
          现在,你漂浮在太空中,你想要转身90度,怎么做呢?目前来说,宇航员在太空中,想要转身或者做其它运动,身上要带一个小气囊。你要向左转身,就要向右后方喷气。你要向前运动,就要向后喷气。
          但是,如果你的气囊里面没有气体了,你还远远的漂浮在航天站之外,那么你恐怕得向航天站求救,找别人把你
          拉回去。还有别的办法么?
          游泳?没有水。扇翅膀?没有空气。确实还有一个办法,把身上的一部分拆下来,借助动量定理,作用力和反作用的关系,把自己弹回来。
          还有别的办法吗?
          我不知道还有没有别的办法。但不管哪一种办法,你都可以感受到其中的窘迫。从最开始就是窘迫的。气囊的容量有限就是窘迫的开始。
          在空间,你要移动,移动的路径就是几何图形,你要转动,转动的角度就是几何意义上的角度。而如果复数导出的是几何,那就意味着,复数描述的是运动。因为运动的结果就是几何图形。
          如果这一点可以确认,那么问题就简单了:用复数描述那些决定你运动的物理量,通过调整复数,也就是调整这些决定你运动的物理量,就可以产生运动。复数虽然不能保证你从A点瞬间转移到B点(决定于你对时空了解的程度),但是它能让你扔掉气囊,使用更好的方式来运动。更进一步的研究复数,或者运动,以及其构成时空的方式,你真的可以从A点瞬间移动到B点:因为时空不是先定的,站在设计师者的角度去理解它,你就可以改变它。
          这就像网游,两点之间甚远,你要是按照标准的规则走,到半路你可能已经死了;若是你用了传送门外挂呢?
          你可以瞬间就到达。如果你手上有游戏源码,或者干脆,游戏就是你写的呢?
          这些话说到这可能仍然是抽象的。但只要一步一步的走,一步一步的理解和实现,那个目标其实并不很远。


          IP属地:海南141楼2018-02-20 00:26
          回复
            回到数学常数,让我们讨论最后一个常数,Pi,不对,是Pi/2。
            回顾e,e有两种表达形式,一种定义式,一种计算式。
            其实计算式还有一个变形:
            e=1+(1/1)(1+(1/2)(1+(1/3)(1+(1/4(...)))))
            没法写数学公式,实在是很别扭。这种平铺写法,让人很难看出什么东西来。
            用语言说,e等于1加上1分之1倍的,1加上2分之1倍的,1加上3分之1倍的,....
            一层一层的括号套起来,最里面那个最后一项,若是无限而言,是不存在最后一项的,
            但若有限的话,最后一项应当是1。这个可以讨论,只是又需要太多篇幅。
            实际的情况是,当嵌套越来越深,最后一项是什么并不重要,
            当深度足够深,一些不算很大的值,都不影响计算结果。这一点写个程序跑一下,
            可以看得很清楚。
            这个形式不像是阶乘形式那么广为人知。大约2005年的时候,我把它推导出来,是受了Pi的
            一种特殊形式的启发。
            那时候还在大学,在校园网偶然发现了一个叫做“外星人程序”的小的c语言程序。
            只有5行。却能计算Pi的数值,达到800位的精度。
            这段程序用的是老版本的c语法。照抄下来在VC6上编译有问题。所以自己改成新语法,
            并且做了重构。由于对派这个神秘常数的兴趣早已有之,所以重构过程中,也一定要把
            算法分析出来。


            IP属地:海南142楼2018-02-20 00:39
            回复
              另外,它能算800位没有问题。而我改装之后,再算800位,还是精确的。
              我怀疑一直加位数,都是精确的,也就是说,这个表达式,可以被认为就是Pi的一种计算方法。
              那么有没有可能,也是Pi的定义式呢?因为要知道,如果所有位数都是精确的,两个不同表达式,
              谁是定义式谁是计算式,真就没有区别。而计算式,由于能算,你也可以把它理解为,离散条件下的
              定义式,它的极限情况就是连续条件下的定义式。
              那么,从那个时候开始,我就已经把那个表达式当做定义式了:e确实是2.71828...,但它也是一个表达式,
              虽然是很复杂的表达式的计算结果,或者说,是一个常数函数;这时候看到派也有这种表达式,那么可以想到,
              派是不是也是一个常数函数?
              这不是我第一次见到Pi的表达式或者展开式,沃利斯乘机,四分之派的反正切,等等,这些我是知道的。但为什么
              这个表达式这么引人注意?因为它是这样的:
              Pi = 2+(1/3)(2+(2/5)(2+(3/7)(2+(4/9)(...)))))
              用语言说,派等于2加上3分之1倍的,2加上5分之2倍的,2加上7分之3倍的...
              如果有最后的一项(也就是最里面的一项),它应该是2,原因也很简单,因为
              e=1+(1/1)(1+(1/2)(1+(1/3)(1+(1/4(...)))))
              如果有最后一项,它应该是1.
              把这两个式子放在一起,可以看出很大的相似性:结构是一样的。
              就像是Pi和e,都是有结构的数一样,你可以各自为两个算法画一棵二叉树,而这两棵二叉树是同构的。
              但有一点不太好,Pi的每一个加号前面都是2,e的每个加号前面都是1。
              我们从前面的分析可以知道,这里面的1对应着本金的不变性后面那个可变的,才对应着利息的可变性。
              而e最终代表一个单位,也就是一年里面的致密的增长量。
              所以有理由认为Pi也是一个单位,但是它又没有维持不变性,所以这个单位并不好。
              但好在,如果对它左右两边都除以2,所有的2都会自动变成1。
              也就是说,
              Pi/2 = 1+(1/3)(1+(2/5)(1+(3/7)(1+(4/9)(...)))))
              二分之派,才是和e相类似的单位,去掉性类似,就剩下,二分之派是单位。
              但到底是个什么单位?还得继续琢磨。
              其实在过去的12年间,每一次尝试解释这个公式的时候,并不是都把2变成1的。因为不知道到底是2好,还是1好。
              毕竟Pi是一个有名有姓的常量,或者说被认为是一个单位,而二分之派虽然也很好,但是它总是没有自己的名字。
              而真正把Pi/2确定当成一个单位理解,还是最近几个月的事情。


              IP属地:海南143楼2018-02-20 00:57
              回复
                Pi = 2+(1/3)(2+(2/5)(2+(3/7)(2+(4/9)(...)))))
                在过去的12年里面,我在心中始终认定这个表达式就是Pi的定义式,这是因为它和e的离散形式具有相同的形式。
                我没见到那种能写成极限的关于Pi的定义式,或者说,我并不认为那个形式能够写出来。所以这就是Pi的唯一的定义式。不是沃利斯积。沃利斯积是怎么算出来的,那个算法我理解,但是从算法中,看不出Pi是怎么定义的。
                这所谓的“怎么定义的”,指的是,这样一个结构数,它有结构,意思就是它描述了关系。到底是谁和谁的关系,关系是什么样的?这个关系又是如何导致了Pi这个东西的出现?
                能用几何的方式显然也是可以接受的。但是反复的尝试都显示出这个东西没法画出图形来。但是这样也好,正好支持了几何可以被导出的这种可能性的存在:Pi的定义式,不依赖,也无法依赖几何方法就可以导出,这不正是最好的情况么。
                然而对于这个关系到底是什么的各种尝试,都失败了,12年,每一次尝试都失败了。
                如果有一件事,你做了12年,都失败了,突然有天成功了,你是不是会高兴的庆祝一下?会不会想要和他人分享
                这种喜悦?
                然而说实话,有多少人能明白这些工作到底是在干什么,到底是为了什么:只有成功之后,产生效果之后,对现实
                造成影响之后,它才能被见到,被认识,被理解,到那个时候才能提到分享。
                换句话说,若不成功呢?一辈子都不成功呢?没有别的选择,只能继续尝试。


                IP属地:海南144楼2018-02-20 01:13
                回复
                  获得i的理解,大约是在去年夏天到秋天这一段时间的事情。
                  一共只有三个东西要处理,e,Pi,还有i(0当时没有意识到其重要性)。
                  e早在几年前用银行的故事理解了,i曾经一度被认为就是负一。
                  5年前我用11点钟来比喻-1,那个时候女儿上小学一年级,那是我给她讲负数是什么的时候用的比喻。
                  这个理解确实也不错,直到去年春天到夏天这个时段,写Zeta函数和黎曼猜想的过程中,用的就是这个理解。
                  但是到装上了小白板(小黑板),开始画磁感线并尝试寻求同性相斥异性相吸的理由的时候,发现i的这个解释
                  有问题。因为这就出现i是-1,i的平方也是-1的情况。很多时候,放在心里是看不出问题的,说出来的时候,
                  问题就暴露了。为了给孩子讲极限问题,又重新审视了关于i是不是-1的理解,发现除了加上1等于0之外,
                  还有一个更小的情况,就是加上1/x等于0。
                  x+1/x=0这个形式在若干年前的失败的分析过程中出现过。但是根本看不出什么意思来,否则就是成功的分析了。
                  而这一次又出现的时候,自然就懂了。
                  i是什么东西就这么确定了下来。可是直到写本文之前,很多东西仍然是不知道的。比如复平面的极限问题到底是什么原因造成的(复平面的观察者的有限性)。
                  i确定了之后,就剩下Pi,而那个时候大约也意识到Pi/2似乎是更好的,所以小白板上2都划掉,变成了1。
                  最后是什么东西导致了Pi/2的解释最终找到呢?
                  是双缝干涉实验。波长650nm的红色激光,射入光纤,光纤通过旋转磁体的磁场空间,并最终接上干涉管。预想的结果是红色条纹的距离会变小,也就是频率的提升,波长的缩短。而现实发生了出人意料的结果:间距基本没变,
                  但是条纹的亮度增加,单个条纹的宽度增加了。想了一个晚上才明白:这个不是干涉实验,是衍射实验的效果。
                  由于磁导率和介电常数的变化已经测得(已经证实构成光速的两个参数都可变),所以能够猜想的就是最小时间单位对最小长度单位的影响,才导致这种情况的出现。而这个影响又是倒置的,和相对论的结果相互矛盾。
                  这是最近一次重新开始审视火车实验的缘起。而重新审视火车实验又再次要求重新理解直角三角形,以及直角和其它角度的本质,这就再次回到了Pi的问题上。
                  首先解决的是勾股定理,终于完全用复数和维数提升的概念写出勾股定理。
                  从前的做法是画一个大正方形,里面套一个小正方形,用大正方形的面积减去四个小三角形的面积,得到小正方形的面积,这是我能证明勾股定理的唯一方法。没有办法脱离图形。没有办法脱离图形,就意味着必须带着气囊,因为用来描述电磁学的复数无法起作用。
                  勾股定理的导出让我意识到用极小的三角形构成圆盘的可能性:当角度极小的时候x~sinx~tanx。由于此时i必须在
                  半径方向上。也就是说,Pi/2,一定可以用i和i的关系来表达。


                  IP属地:海南145楼2018-02-20 01:44
                  回复
                    先暂停一下,明天再写。


                    IP属地:海南146楼2018-02-20 02:41
                    回复
                      在继续讨论Pi之前,我来说明一下我的错误,关于y=x^2求导的问题,我到底错在哪。
                      我的错误在于,我没有认识到,极限运算,它是一个不会改变自变量的函数。
                      最终一个函数的导数,是一个极限运算的结果
                      :x的变化量在逐渐接近于0的过程中,y的变化量的差值会逐渐接近于什么值。
                      而逐渐接近于那个值,既不需要x的变化量真的等于0,也不需要y的变化量真的等于那个值。
                      这就像平均数不必须是样本集合中的任何一个数一样。
                      那么有没有丢掉了无穷小而造成漏洞的可能呢?
                      由于微分结果再积分,这是查表找原函数的过程,所以没有丢掉无穷小而造成漏洞的可能,没有失去无穷小项目
                      而累积失去,或者增加无穷小项目而累积增加的可能。
                      那么,我大费周章的说了这么多,是不是就是一个误解了极限运算而造成的错误呢?


                      IP属地:海南147楼2018-02-20 18:46
                      收起回复
                        不是的。因为这个问题的提出,也就是无穷小是什么这个问题的提出,并不来自于求导,而是来自于复数
                        的有限性。
                        当x趋近于0,x最终还不是0的那个值是1/i,再小于这个值是1/(i+1/i),这不是lim运算的定义,但是这是“x可以到达的极限”的定义。
                        按照导数的定义来讲,也就是使用lim运算求极限这种方式,应当得到的是一个“不能达到的值”。因为这是在x的变化量趋近于却不能,也不应该等于0的前提下导出的一种度量结果,应当用平均数不是任意样本值的方式来理解。也就是说,引入lim运算之后,整个式子的意义都变了。而且这种做法是无法还原的。也就是说,一旦引入lim运算,就进入了“你应当知道并记得,这一切都是对现实的抽象理解,而不是现实本身”。
                        这个说法还有一个依据:x的变化量不能等于0,而在运算过程中,一定有一个步骤让x变化量的lim运算结果等于0,
                        如果lim确实影响x的变化量,那就出现只有一个点的切线问题。只有一个点,做不了直线,更谈不上切线。就算是圆的切线,实际上也是三个点作用的结果。


                        IP属地:海南148楼2018-02-20 19:12
                        收起回复
                          “你应当知道并记得,这一切都是对现实的抽象理解,而不是现实本身”,在所有用到导数(本质是求极限)的地方
                          都得牢记。如果忘记呢?如果给你一个2x,却不告诉你它的由来是y=x^2的导数呢?
                          会出现什么问题?会出现的就是你会把那个“绝对不会存在”的情况当成真实的情况。y=x^2的导数,既然已经被定义为lim运算的结果,那就没有别的可说的了。可是若要照顾不知道,或者根本没法知道这个结果的含义是“绝对不会存在”的用户,那么就不应当定义这种运算方式。因为现实的情况,也就是不用lim运算符的情况下,尾巴上的无穷小不可舍弃。lim运算符虽然必然舍弃的做法在自己的圈子里面总是对的,但一旦拿到外面,就总是错的。
                          这就好像是在说,“我知道我是在说谎,我说的那个东西做不到”,但是你若不说明,别人会在默认的前提下认为你说的是真话,你说的那个是能做到的事情。
                          同样的问题,也出现在场论的数学表述上面:比如要用到的梯度,散度,旋度。梯度可以认为是导数在三维以及以上高维情况下的扩展。它也是一个极限。
                          但是被导数那种“在某点上”的概念引导,你会认为梯度也是一个“在某点”存在的概念。但是还是那句话,一个点无法确定一条直线(可以确定任意多条不同方向的直线),所以根本就做不到“在某点”,只能是“非常接近的两点”。
                          那么这个差别造成了什么影响呢?梯度是把标量场升级为向量场的一种运算。如果你认为真的可以“在某点”,那么你就可以认为一点就能画向量。在平面直角坐标系,要画向量的话,你得选择一个起点和一个终点,通常选择原点为起点,另一个坐标值为终点。这看上去就好像向量只有一个点就够了。但是在向量场中,由于各处方向不一样,
                          必须是在那个位置附近的两点才能构成向量。不能缺省让一个点是原点,因为实际上这种情况处处都是局部的原点。
                          而如果习惯用lim运算,习惯使用那个做不到的,却忘了它是做不到的,你就会认为一个点就可以做向量了,所以才经常说,“某点的方向”。


                          IP属地:海南149楼2018-02-20 19:26
                          回复
                            虽然明明知道,梯度将标量场抽象到向量场,并且得到了nabla算子,而且所有的计算都是对的,
                            但是,在后来,应用向量场的时候,应用散度和旋度的时候,假想的,却被认为是现实的,一个点上具有方向
                            (注:一个点上没有方向,两个点才能定义方向,一个点定义方向叫极限,但那就已经意味着它像平均数一样,
                            不再具有还原到真实状况的能力了)的这种认识,就会让人把下面作为基础的标量场整个都视而不见。
                            以电磁学而论:电场有散无旋,磁场有旋无散。而一个运动的电子,它同时具有电场和磁场,怎么理解?
                            给你公式放在那,没人能看出任何东西来。因为问题不在这,问题在于矢量场到底是怎么来的。
                            最后只能去挖掘它们公共的东西,也就是nabla算子,才有可能找到二者为什么不能共存,又为什么必须共存的原因:而这个原因就在于,两种矢量场,都是同一种标量场,在不同角度上的理解。
                            意识到这一点,才能抽象出“静电磁场”这种标量场来。
                            这样不是很好吗?当然好了。可是你知道吗,由于把两点当成一点的做法不被察觉,你就很难发现后面公共的东西,因为你不会这么想。但如果你回到极限,回归到导数,发现导数说的是“必然没法实现的”,而不是“必然能够实现的”,那么这些问题才能被理解。可是,谁又会想到回归导数去找这个问题的根源?
                            我也不会!并不是说我写了这些,就意味着我是这么做的。现实的情况是,我没法实现对梯度散度和旋度的理解,好几年都理解不了,拿着公式算谁都会,但不知道自己算的是什么东西,谁能帮忙解决?
                            麦克斯韦引入旋度,用方程组重写了电磁学规律,用旋度的旋度这种算法导出了电磁波的微分方程。
                            那么,旋度的旋度是什么意思?一次旋度我都不懂,旋度再旋度,我怎么能懂?
                            再这个基础上你再回来看最初的问题:如果给你一个词,它叫“极限”或者“极限运算”,你会把它定义成,“能实现的”还是“不能实现的”?稍微有一点良心,你都不会故意把它定义为“不能实现”的(x的变化量最终等于0是不能实现的,0不能做变化率的分母,变化率都没有了,它还有可以什么进一步计算的理由?)。
                            但是,在不能认识到观察者自身有限性的那个年代,在复数和微积分不通的背景之下,你要做这件事,就只能定义“不能实现的”。所以这个局限性导致的必然性没法避免。可是这一点又没有被明确标出。当然,没人意识到的东西也没人会去标出。
                            这不就是“如果世界上没有别人的话,最美的就是自己”的一个现实写照么:没有参照物,能实现的和不能实现的,没法分辨。


                            IP属地:海南150楼2018-02-20 19:48
                            回复
                              但是数学最终还是要应用于物理。
                              这就有参照物了。所以为什么这么多年都没有实质的进展,就是因为你很难想到那些根本就没有经验的东西。
                              所以数学无限的有限性,是在物理上发现的。
                              这样才能反过来让数学更符合现实:而不是更符合理想。
                              现实的数学能正确的描述和解决实际的问题,理想的数学却不能。
                              所以从工匠的角度来说,宁可知道自己的工具是破的,也不假设自己的工具是完美的。
                              破的还可以修,完美的则不知道会做出什么怪物来。


                              IP属地:海南151楼2018-02-20 19:59
                              回复