8、微结构和主频
CPU性能(单核)=主频*IPC(这个公式必须是同指令集才能成立,不同指令集不可比较)。主频就是CPU工作的时钟频率,同一款CPU在一个时钟周期内完成的指令数量是固定的,因此主频越高,完成一个时钟周期所消耗的时间越短,CPU的运行速度就越快。
IPC是单位时间内调用的指令集数量,微结构设计得越好,单位时间内能调用的指令集数量越多,CPU的性能就越好。微结构好坏取决于前端设计水平,主频的高低一方面受微结构流水线级数的影响,但更多的是取决于后端的设计水平。再往细的方面说,前端设计主要指芯片的执行结构、数字逻辑层设计、执行状态仿真等方面,后端设计主要指物理层电路的具体优化,包括单元布局、时序优化等方面。
微结构研发不仅技术门槛高,而且费时费钱,一个微结构从研发到产品一般需要3年,而所需资金更是难以计数。龙芯自2001年以来,共研发GS132、GS232、GS264、GS464、GS464V、GS464E共6个微结构,以龙芯及其有限的人力和财力,实现了以平均2.33年更新一个微结构的发展速度,相较于国家非常有限的扶持,龙芯拿出了远远超过投入的产出。
龙芯在2015年8月发布的GS464E微结构测试参数非常亮眼。根据中电集团的测试报告,GS464E的SPEC2000使用GCC4.8编译器跑分为:整数768/G、浮点1153/G,使用LCC编译器跑分为:整数828/G、浮点1578/G,微结构的效率在整数性能方面基本追平了AMD目前最好的微结构,在浮点性能方面接近Intel在2013年发布的Ivy,分支预测和访存带宽更是能直接与Ivy比肩(Intel公司2013年的Ivy和2015年的Skylake差距很小)。
现在,龙芯和国外巨头在微结构方面的差距已经比较小了,差距主要在主频方面和制程工艺方面。在主频方面,2015年发布的龙芯3A2000的主频只有1G,而代码已冻结,即将流片的龙芯3A3000的也只有1.6-1.8G的主频。相比之下,Intel的CPU主频大多在3G以上,部分CPU主频接近4G;在制程工艺方面,受限于中芯国际的代工水平,龙芯能使用的最好的制程为28nm,而市面上出售的Intel芯片制程大多为22nm,Intel最新的产品普遍采用14nm制程工艺。