掐架吧 关注:10,880贴子:909,908
  • 11回复贴,共1

【你的看法?】 不可逆转的转基因水稻

取消只看楼主收藏回复


说点三次元,与自身息息相关的事情吧
水稻,转基因水稻
毕竟人是铁,饭是钢,一顿不吃饿得慌
曾经面对面的请教过某内某著名线生物学领域的专家(为了河蟹,就不指名道姓了)
他是极力支持转基因技术的,他以国家战略为出发点,扯出一堆论证,证明掌握此技术的重要性。反正专家的话是让吾等井底之蛙醍醐灌顶,不过还不到洗脑的地步
随后,吾辈翻阅资料,同时借机请教了非生物学领域的学者们,得到的回答基本一致:绝对支持转基因水稻!! 这里的支持是说,支持天朝掌握此技术,而对商业化推广持谨慎或保留意见!!!
不久前,意外的与从事转基因工作的人交流时,他说起为什么学者专家们为什么大都支持转基因水稻?而普通民众大部分持激烈的反对意见呢?(感兴趣的,可以到论坛,微博什么的去翻翻。。。) 转基因水稻势在必行!!!!谁也无法阻止!!!!
因为什么呢?当然是考虑问题的角度不同
P民如吾,更加关心的是,这转基因水稻吃了安全吗?
专家们则从更高的角度出发:时代(局势)迫切的要求我们必须掌握转基因水稻的核心技术。
不可否认,哪一派都有激进分子,而当我知晓形势的不可逆转,我能做似乎只有顺其自然,连我想要知晓的真相似乎也是镜花水月。
我个人认为这情势似乎很像当年搞原子弹氢弹什么的,天朝一定会掌握这项技术,但我们不轻易将至用于战争。
至于转基因水稻的未来,谁也无法预料。。。
以下是一些资料,不全,管中窥豹吧
茶楼随意


IP属地:北京1楼2014-01-12 18:48回复
    • Helping mitigate climate change and reducing greenhouse gases
    The important and urgent concerns about the environment have implications for biotech crops, which contribute to a reduction of greenhouse gases and help mitigate climate change in two principal ways. First, permanent savings in carbon dioxide (CO2) emissions through reduced use of fossil-based fuels, associated with fewer insecticide and herbicide sprays; in 2011, this was an estimated saving of 1.9 billion kg of CO2, equivalent to reducing the number of cars on the roads by 0.8 million. Secondly, additional savings from conservation tillage (need for less or no ploughing facilitated by herbicide tolerant biotech crops) for biotech food, feed and fiber crops, led to an additional soil carbon sequestration equivalent in 2011 to 21.1 billion kg of CO2, or removing 9.4 million cars off the road. Thus in 2011, the combined permanent and additional savings through sequestration was equivalent to a saving of 23 billion kg of CO2 or removing 10.2 million cars from the road (Brookes and Barfoot, 2013, Forthcoming).
    Droughts, floods, and temperature changes are predicted to become more prevalent and more severe as we face the new challenges associated with climate change, and hence, there will be a need for faster crop improvement programs to develop varieties and hybrids that are well adapted to more rapid changes in climatic conditions. Several biotech crop tools, including tissue culture, diagnostics, genomics, molecular marker-assisted selection (MAS) and biotech crops can be used collectively for ‘speeding the breeding’ and help mitigate the effects of climate change. Biotech crops are already contributing to reducing CO2 emissions by precluding the need for ploughing a significant portion of cropped land, conserving soil, and particularly moisture, and reducing pesticide spraying as well as sequestering CO2.
    In summary, collectively the above five thrusts have already demonstrated the capacity of biotech crops to contribute to sustainability in a significant manner and for mitigating the formidable challenges associated with climate change and global warming; and the potential for the future is enormous. Biotech crops can increase productivity and income significantly, and hence, can serve as an engine of rural economic growth that can contribute to the alleviation of poverty for the world’s small and resource-poor farmers.
    Regulation of biotech crops
    The lack of appropriate, science-based and cost/time-effective regulatory systems continues to be the major constraint to adoption. Responsible, rigorous but not onerous, regulation is needed for small and poor developing countries. It is noteworthy, that on 6 November 2012, in California, USA, voters defeated Proposition 37, the proposed state petition on “Mandatory Labeling of Genetically Engineered Food Initiative” – the final result was No 53.7% and Yes 46.3%.
    Status of approved events for biotech crops
    While 28 countries planted commercialized biotech crops in 2012, an additional 31 countries totalling 59 have granted regulatory approvals for biotech crops for import, food and feed use and for release into the environment since 1996. A total of 2,497 regulatory approvals involving 25 GM crops and 319 GM events have been issued by competent authorities in 59 countries, of which 1,129 are for food use (direct use or processing), 813 are for feed use (direct use or processing) and 555 are for planting or release into the environment. Of the 59 countries with regulatory approvals, USA has the most number of events approved (196), followed by Japan (182), Canada (131), Mexico (122), Australia (92), South Korea (86), New Zealand (81), European Union (67 including approvals that have expired or under renewal process), Philippines (64), Taiwan (52) and South Africa (49). Maize has the most number of approved events (121 events in 23 countries), followed by cotton (48 events in 19 countries), potato (31 events in 10 countries), canola (30 events in 12 countries) and soybean (22 events in 24 countries). The event that has received the most number of regulatory approvals is the herbicide tolerant maize event NK603 (50 approvals in 22 countries + EU-27), followed by the herbicide tolerant soybean event GTS-40-3-2 (48 approvals in 24 countries + EU-27), insect resistant maize event MON810 (47 approvals in 22 countries + EU-27), insect resistant maize event Bt11 (43 approvals in 20 countries + EU-27), insect resistant cotton event MON531 (36 approvals in 17 countries + EU-27) and insect resistant cotton event MON1445 (31 approvals in 14 countries + EU-27).
    Global value of biotech seed alone was ~US$15 billion in 2012
    Global value of biotech seed alone was ~US$15 billion in 2012. A 2011 study estimated that the cost of discovery, development and authorization of a new biotech crop/trait is ~US$135 million. In 2012, the global market value of biotech crops, estimated by Cropnosis, was US$14.84 billion, (up from US$13.35 billion in 2011); this represents 23% of the US$64.62 billion global crop protection market in 2012, and 35% of the ~US$34 billion commercial seed market. The estimated global farm-gate revenues of the harvested commercial “end product” (the biotech grain and other harvested products) is more than ten times greater than the value of the biotech seed alone.
    Future Prospects
    Future prospects up to the MDG year of 2015 and beyond look encouraging. Several new developing countries are expected to plant biotech crops before 2015 led by Asia, and there is cautious optimism that Africa will be well-represented: the first biotech based drought tolerant maize planned for release in North America in 2013 and in Africa by ~2017; the first stacked soybean tolerant to herbicide and insect resistant will be planted in Brazil in 2013; subject to regulatory approval, Golden Rice could be released in the Philippines in 2013/2014; drought tolerant sugarcane is a possible candidate in Indonesia, and biotech maize in China with a potential of ~30 million hectares and for the future biotech rice which has an enormous potential to benefit up to 1 billion poor people in rice households in Asia alone. Biotech crops, whilst not a panacea, have the potential to make a substantial contribution to the 2015 MDG goal of cutting poverty in half, by optimizing crop productivity, which can be expedited by public-private sector partnerships, such as the WEMA project, supported in poor developing countries by the new generation of philanthropic foundations, such as the Gates and Buffet foundations. Observers are cautiously optimistic about the future with more modest annual gains predicted because of the already high rate of adoption in all the principal crops in mature markets in both developing and industrial countries.
    Drought in the USA in 2012
    The worst drought in 50 years impacted on crop production in the USA in 2012. The drought was estimated to have affected 26 of the 52 states, and covered at least 55% of the land area of the USA, which is almost 1 billion hectares. In comparison, the more severe Dust Bowl drought of 1934 covered almost 80% of the US land area. By the end of July 2012, drought and extreme heat had affected more than 1,000 counties in 29 states and they were designated natural disaster counties by USDA. As of July 2012, compared with the average year, 38% of the US maize crop had already been rated as poor and similarly 30% of soybean was rated poor. Given that the maize crop is the most important in the US valued at US$76.5 billion in 2011, losses for 2012 are expected to be substantial. The drought in Texas alone in 2011 was estimated to have cost US$7.6 billion and final losses for the drought of 2012 are likely to be much higher. Since US maize and US soybean exports represent 53% and 43% of global maize and soybean exports, respectively, the impact of the 2012 drought on international prices are likely to be significant. There is some comfort in the fact that global rice and wheat supplies were relatively plentiful in 2012 and the hope is that they will preclude a broad escalation of commodity prices as was the case in mid-2008. Maize is more vulnerable than soybean to price escalation because the shortfall in maize production could be exacerbated by the demand for maize for biofuel production in the US.


    IP属地:北京9楼2014-01-12 19:10
    回复
      Some preliminary advance estimates in July 2012 suggested that losses in the US soybean and maize area affected by drought could be as high as 30%, but reliable estimates will not be available until later. Some of the most recent estimates indicate that compared with 2011 yields the average for 2012 will be 21% less for maize and 12% less for soybeans. Preliminary estimates by USDA suggested that the 2012 drought would result in increases in food prices of 3 to 4% in 2013, with beef prices increasing by 4 to 5%.
      First biotech drought tolerant maize to be deployed in the US in 2013
      Drought tolerance conferred through biotech crops is viewed as the most important trait that will be commercialized in the second decade of commercialization, 2006 to 2015, and beyond, because it is, by far, the single most important constraint to increased productivity for crops worldwide. The first and most advanced drought tolerant biotech/transgenic maize, will be launched commercially by Monsanto in the USA in 2013. Notably, the same technology, has been donated by the technology developers, Monsanto and BASF, to a Private/Public sector partnership (WEMA) which hopes to release the first biotech drought tolerant maize as early as 2017 in sub-Saharan Africa where the need for drought tolerance is greatest.
      Global review of drought tolerance
      Given the pivotal importance of drought tolerance, ISAAA invited Dr. Greg O. Edmeades, former leader of the maize drought program at the International Maize and Wheat Improvement Center (CIMMYT), to contribute a timely global overview on the status of drought tolerance in maize, in both conventional and biotech approaches, in the private and public sector, and to discuss future prospects in the near, mid and long term. The contribution by Dr. Edmeades, “Progress in Achieving and Delivering Drought Tolerance in Maize -- An Update”, supported by key references, is included as a chapter in the full version of Brief 44, as well as an introductory chapter on drought to highlight the enormous global importance of the drought tolerance trait, which virtually no crop or farmer in the world can afford to be without.


      IP属地:北京10楼2014-01-12 19:10
      回复
        终于发完了,文章太长了。。。
        那么下面是吾等P民最关心的问题:转基因安全性?
        总结了近十年的GMO安全性研究(1783篇文章)

        安全性研究的分类小结
        动物长期喂养实验:
        Assessment of GE food safety using '-omics' techniques and long-term animal feeding studies.
        Ricroch AE. N Biotechnol. 2013 May 25;30(4):349-54. doi: 10.1016/j.nbt.2012.12.001. Epub 2012 Dec 17.
        AgroParisTech, Chair of Evolutionary Genetics and Plant Breeding, 16, rue
        Claude-Bernard, 75005 Paris, France. agnes.ricroch@agroparistech.fr
        Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review.
        Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE.2 Food Chem Toxicol. 2012 Mar;50(3-4):1134-48. doi: 10.1016/j.fct.2011.11.048. Epub 2011 Dec 3.
        对GMO安全性进行认证的机构:


        IP属地:北京11楼2014-01-12 19:16
        回复
          从英国的Biochemical Society,到米帝的FDA。还有很多独立机构比如澳洲的OGTA,FSANZ和欧洲的EFSA。
          而有趣的是,所谓的“天然”传统食物并没有得到这么详细,和小心的研究。 很多最近才出现的天然传统食物比如猕猴桃, 连研究都没研究过。
          最影响人类健康的,并不是食物中含有的基因。而是致病的微生物和营养不均衡。 鱼肉中的寄生虫感染,谷物中霉菌造成的毒素,才是最严重的安全隐患。
          参见:Knudsen, I., Søborg, I., Eriksen, F., Pilegaard, K., Pedersen, J., Risk Management and Risk Assessment of Novel Plant Foods: Concepts and Principles, Food and Chemical Toxicology (2008), doi: 10.1016/j.fct.2008.01.022
          1 Aalhus, J.L., M.E.R. Dugan, K.A. Lien, I.L. Larsen, F. Costello, D.C. Roland, D.R. Best and R.D. Thacker, 2003, Effects of feeding glyphosate-tolerant canola meal on swine growth, carcass composition and meat quality. Journal of Animal Science, 81:3267
          2 Aeschbacher, K; Messikommer, R; Meile, L; Wenk, C, 2005, Bt176 corn in poultry nutrition: Physiological characteristics and fate of recombinant plant DNA in chickens. British Poultry Science, 84:385-394
          3 Aeschbacher, K., L. Meile, R. Messikommer and C. Wenk, 2002, Influence of genetically modified maize on performance and product quality of chickens. Proceedings of the Society of Nutrition Physiology, 11:196
          4 Aeschbacher, K., L. Meile, R. Messikommer and C. Wenk, 2002, Influence of genetically modified maize on performance and product quality of chickens. Proceedings of the Society of Nutritional Physiology, 11:196
          5 Aeschbacher, K., L. Meile, R. Messikommer and C. Wenk. 2001. Genetically modified maize in diets for chickens and laying hens: influence on performance and product quality. Proceedings: International Symposium on Genetically Modified Crops and Co-products as Feeds for Livestock, pp 41-42, September, Nitra, Slovak Republic.
          6 Aeschbacher, K., R. Messikommer and C. Wenk. 2001. Physiological characteristics of Bt-176 corn in poultry and destiny of recombinant plant DNA in poultry products. Annals of Nutr. And Metab.45(Suppl. 1):376.
          7 Alexander, T.W., R. Sharma, E.K. Okine, W.T. Dixon, R.J. Forster, K. Stanford and T.A. McAllister. 2002. Impact of feed processing and mixed ruminal culture on the fate of recombinant EPSP synthase and endogenous canola plant DNA. FEMS Microbiology Letters 214:263-269.
          8 Alexander, T.W., T. Reuter, E. Okine, R. Sharma, and T.A. McAllister. 2006. Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready rapeseed meal. Br J Nutr 96(6):997-1005.
          9 Alexander, T.W., T. Reuter, K. Aulrich, R. Sharma, E.K. Okine, W.T. Dixon, and T.A. McAllister. 2007. A review of the detection and fate of novel plant molecules derived from biotechnology in livestock production. Animal Feed Science and Technology 133(1-2):31-62.
          10 Alexander, TW; Sharma, R; Deng, MY; Whetsell, AJ; Jennings, JC; Wang, YX; Okine, E; Damgaard, D; McAllister, TA, 2004, Use of quantitative real-time and conventional PCR to assess the stability of the cp4 epsps transgene from Roundup Ready (R) canola in the intestinal, ruminal, and fecal contents of sheep. , Journal of Biotechnology, 112:255-266
          11 Álvarez-Alfageme F, von Burg S, Romeis J, 2011 Infestation of Transgenic Powdery Mildew-Resistant Wheat by Naturally Occurring Insect Herbivores under Different Environmental Conditions. PLoS ONE 6(7): e22690. doi:10.1371/journal.pone.0022690
          12 Ames, JM, 2007, Evidence against dietary advanced glycation endproducts being a risk to human health, Molecular Nutrition and Food Research, 51(9):1085-1090
          13 Anilkumar, B; Reddy, A Gopala; Kalakumar, B; Rani, M Usha; Anjaneyulu, Y; Raghunandan, T; Reddy, Y Ramana; Jyothi, K; Gopi, K S, 2010, Sero-biochemical Studies in Sheep Fed with Bt Cotton Plants, Toxicology International, 17(2):99-101
          14 Apgar, G.A. T.A. Guthrie, K.S. Griswold, M.P. Martin, J.S. Radcliffe, and M. D. Lindemann. 2004.Nutritional value of a corn containing a glutamate dehydrogenase gene for growing pigs. J.Anim. Sci. 82(Suppl. 1):456-457. Abstract 912.
          15 Appenzeller, LM; Munley, SM; Hoban, D; Sykes, GP; Malley, LA; Delaney, B, 2008, Subchronic feeding study of herbicide-tolerant soybean DP-356Ø43-5 in Sprague-Dawley rats, Food Chemistry Toxicology, 46(6):2201-2213
          16 Arencibia, A; Gentinetta, E; Cuzzoni, E; Castiglione, S; Kohli, A; Vain, P; Leech, M; Christou, P; Sala, F, 1998, Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation, Molecular Breeding, 4:99-109
          17 Asanuma, Y; Jinkawa T, Tanaka H, Gondo T, Zaita N, Akashi R. Assays of the production of harmful substances by genetically modified oilseed rape (Brassica napus L.) plants in accordance with regulations for evaluating the impact on biodiversity in Japan. Transgenic Res. 2011 Feb;20(1):91-7.
          18 Ash, J; Novak, C; Scheideler, SE , 2003, The fate of genetically modified protein from Roundup Ready Soybeans in laying hens., Journal of Applied Poultry Research , 12(2):242-245
          19 Ash, J.A., S.E. Scheideler and C.L. Novak. 2000. The Fate of Genetically Modified Protein from Roundup ReadyÒ Soybeans in the Laying Hen. Poultry Sci. 79 (Suppl. 1):26. Abstract 111.
          20 Atkinson, H J; Johnston, K A; Robbins, M, 2004, Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet, Journal of Nutrition, 134:431–434
          21 Aulrich, K; Bohme, H; Daenicke, R; Halle, I; Flachowsky, G, 2001, Genetically modified feeds in animal nutrition 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition, Archiv für Tierernaehrung (Archives of Animal Nutrition), 54:183-195
          22 Aulrich, K., I. Halle and G. Flachowsky. 1998. Inhaltsstoffe und Verdaulichkeit von Maiskörnen der Sorte Cesar und der gentechnisch veränderten Bt-hybride bei Legenhennen. Proc Einfluss von Erzeugung und Verarbeitung auf die Qualität laudwirtschaftlicher Produkte (VDLUFA) Kongre8band 1998 110. VDLUFA-Kongre8. 14.-18.09.1998. Gie8en, 465-468. Gie8en, Deutchland.
          23 Aumaitre, A; Aulrich, K; Chesson, A; Flachowsky, G; Piva, G, 2002, New feeds from genetically modified plants: substantial equivalence, nutritional equivalence, digestibility, and safety for animals and the food chain, Livestock Production Science, 74(3):223-38
          24 Bakan, B; Melcion, D; Richard-Molard, D; Cahagnier, B, 2000, Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain, Journal of Agricultural and Food Chemistry, 50(4):728–731
          25 Baker, J M; Hawkins, N D; Ward, J L; Lovegrove, A; Napier, J A; Shewry, P R; Beale, M H, 2006, A metabolomic study of substantial equivalence of field-grown genetically modified wheat, Plant Biotechnology Journal, 4(4):381
          26 Bakke-McKellep AM, M. Sanden, A. Danieli, R. Acierno, G-I Hemre, M. Maffia, and Å Krogdahl. 2008. Atlantic salmon (Salmo salar L.) parr fed genetically modified soybeans and maize: histological, digestive, metabolic, and immunological investigations. Research in Veterinary Science 84, 395-408.
          27 Bakke-McKellep, A.M., E.O. Koppang, G. Gunnes, M. Sanden, G-I. Hemre, T. Landsverk, and A. Krogdahl. 2007. Histological, digestive, metabolic, hormonal and some immune factor responses in Atlantic salmon, Salmo salar L., fed genetically modified soybeans. J of Fish Diseases 30:65-79.
          28 Barriere, Y; Verite, R; Brunschwig, P; Surault, F; Emile, J C, 2001, Feeding value of corn silage estimated with sheep and dairy cows is not altered by genetic incorporation of Bt176 resistance to Ostrinia nubilalis, Journal of Dairy Science, 84:1863-1871


          IP属地:北京12楼2014-01-12 19:17
          回复
            29 Barrière, Y., R.Vérité, P. Brunschwig, F. Surault, and J.C. Emile. 2001. Feeding value of silage maize estimated with sheep and dairy cows is not altered by genetic incorporation of Bt 176 resistance to Ostrinia nubilalis. J. Dairy Sci. 84:1863-1871.
            30 Barros, E; Lezar, S; Anttonen, M J; van Dijk, J P; Röhlig, R M; Kok, E J; Engel, K-H , 2010, Comparison of two GM maize varieties with a near isogenic non-GM variety using transcriptomics, proteomics and metabolomics, Plant Biotechnology Journal, 8(4):436-451
            31 Barros, G; Magnoli, C; Reynoso, M M; Ramirez, M L; Farnochi, M C; Torres, A; Dalcero, A; Sequeira, J; Rubinstein, C; Chulze, S, 2009, Fungal and mycotoxin contamination in Bt maize and non-Bt maize grown in Argentina, World Mycotoxin Journal, 2(1):53-60
            32 Batista, R; Martins, I; Jeno, P; Ricardo, C P; Oliveira, M M, 2007, A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples, International Archives of Allergy and Immunology, 144(1):29-38
            33 Batista, R; Nunes, B; Carmo, M; Cardoso, C, 2005, Lack of detectable allergenicity of transgenic maize and soya samples, Journal of Allergy and Clinical Immunology, 116(2):403–410
            34 Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida, 2008, Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion., PNAS, 105(9):3640-5
            35 Baudo, María Marcela; Lyons, Rebecca; Powers, Stephen; Pastori, Gabriela M; Edwards, Keith J; Holdsworth, Michael J; Shewry, Peter R, 2006, Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding., Plant Biotechnology Journal, 4(4):369-80
            36 Beagle, J.M., G.A. Apgar, K.L. Jones, K.E. Griswold, J.S. Radcliffe, X. Qiu, D.A. Lightfoot, and M.J. Iqbal. 2006. The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs. J. Anim. Sci. 84:597-607.
            37 Beagle, J.M., G.A. Apgar, K.L. Jones, K.E. Griswold, X. Qiu, and M.P. Martin. 2004. The digestive fate of the gdh A transgene in corn diets fed to weanling swine. J. Anim. Sci. 82(Suppl. 1):457. Abstract 913.
            38 Beever, D.E., K. Glenn, and R.H. Phipps. 2003. A safety evaluation of genetically modified feedstuffs for livestock production; the fate of transgenic DNA and proteins. Asia-Aust. J. Anim. Sci. 16(5):764-772.
            39 Benedict J; Fromme, D; Cosper, J; Correa, C; Odvody, G; Parker, R, 1998, Efficacy of Bt Corn Events MON810, Bt11 and E176 in Controlling Corn Earworm, Fall Armyworm, Sugarcane Borer and Aflatoxin, ,
            40 Berberich, S A; Ream, J E; Jackson, T L; Wood, R; Stipanovic, R; Harvey, P; Patzer, S; Fuchs, R L , 1996, The composition of insect-protected cottonseed is equivalent to that of conventional cottonseed, Journal of Agricultural and Food Chemistry, 44(1):365–371
            41 Berger, L.L., N.D. Robbins and E.P. Stanisiewski. 2002. Effect of feeding diets containing corn grain with Roundup (event GA21 or NK603), control, or conventional varieties on steer feedlot performance and carcass characteristics. J. Anim. Sci. 80(Suppl. 1):270. Abstract 1080.
            42 Berger, L.L., N.D. Robbins, J.R. Sewell, E.P. Stanisiewski, and G.F. Hartnell. 2003. Effect of feeding diets containing corn grain with corn rootworm protection (event MON863), control, or conventional varieties on steer feedlot performance and carcass characteristics. J. Anim. Sci. 81(Suppl. 1):214. Abstract M150.
            43 Betz F S, Hammond B G , Fuchs R L, 2000, Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests., Regul. Toxicol. Pharmacol., 32(2):156-173
            44 Bohme H, Aulrich K, Daenicke R, Flachowsky G, 2001, Genetically modified feeds in animal nutrition 2nd communication: Glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs, Archives of Animal Nutrition, 54(3):197-207
            45 Böhme H, Rudloff E, Schöne F, Schumann W, Hüther L, Flachowsky G. 2007. Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs.Archives of animal nutrition 61(4):308-16. 2007.
            46 Böhme, H. and K. Aulrich. 1999. Inhaltsstoffe und Verdaulichkeit von transgenen Zuckerrben bzw. Krnermais im Vergleich zu den isogenen Sorten beim Schwein. (Ingredients and digestibility of transgenic sugar beets and corn in comparision to the isogenic varieties in the case of pigs). VDLUFA Conference Proceedings 1999, 111th VDLUFA Conference, 13-17 September 1999, Halle/Saale, pp. 289-292.
            47 Böhme, H., B. Hommel, and G. Flachowsky. 2005. Nutritional assessment of silage from transgenic inulin synthesizing potatoes for pigs. J Animal and Feed Sci. 14(Suppl. 1):333-336.
            48 Bondzio, A., Stumpff, F., Schoen, J., Martens, H., Einspanier, R., (2008) Impact of Bacillus thuringiensis Toxin Cry1Ab on rumen epithelial cells (REC) - a new in vitro model for safety assessment of recombinant food compounds, Food and Chemical Toxicology (2008), doi: 10.1016/j.fct.2008.01.038
            49 Borejsza-Wysocka, Ewa; Norelli, John L; Aldwinckle, Herb S; Malnoy, Mickael, 2010, Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period, BMC Biotechnology, 10:41
            50 Brake DG, Evenson DP 2004 A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem Toxicol. 42:29-36.


            IP属地:北京13楼2014-01-12 19:20
            回复
              关于GMO安全的组织

              资料库:
              http://wenku.baidu.com/view/b3cc1ee2b9f3f90f77c61b06.html
              到目前为止,academicsreview收录了2000多篇GMO食物和种子安全性和营养价值的学术论文与报告。长话短说:GMO食物与种子安全,而且其中有些有更好的营养价值。 gmopundit的博主整理了其中的600篇,这是论文列表。


              IP属地:北京15楼2014-01-12 19:24
              回复
                一篇关于转基因作物对环境的安全性报告,有兴趣的可以看看(文章我就不贴了。。。
                http://www.sesync.org/opportunities/data-modeling-ses
                没办法,自然科学这一块儿,欧美就是大佬,所以论文都是英文
                1、转基因技术的本质
                转基因植物和常规育种植物从本质上来说是一样的。
                原理:两者都是在原有基础上增加某些优良性状、对原有优良性状进行提高、或消除原有不利性状。
                最终目的:转基因植物和常规育种的最终目的都是获得具有新优良性状、或者原有优良性状提高、或者消除原有不良性状的新品种,从而更好地服务于农业生产。
                本质:常规育种实质上是通过基因交流来进行的,通过使亲本基因组发生变化而达到目的,只不过所发生变化的基因比较多,规模比较大而已,其实质与转基因技术一样。有意识的杂交育种已有100多年的历史了!
                转基因方法不比传统育种更危险
                传统育种也有基因重组和基因突变
                传统育种也可能产生过敏物(如黑麦中及含让部分人过敏之蛋白)
                传统育种也会产生新的性状
                常规育种技术特点
                ① 只能在亲缘关系相近的种间进行基因交换
                ② 育种目的性强,但在基因水平上不明确控制优良性状的是哪些基因,针对性较差,所以不一定能获得优良性状
                ③ 耗时长,育种周期长
                ④亲本的劣质基因可能随着目的基因一起保留
                转基因技术育种特点
                ① 允许亲缘关系较远的种属间进行基因交换
                ② 育种目的性强 ,在基因水平上明确控制优良性状的是哪些基因,针对性很强,有很大可能性获得优良性状
                ③耗时短,育种周期短
                ④由于转到植物中去的只有目的基因,所以只保留优良基因
                冼亮淀粉酶
                转基因水稻bt63 文献求助 有链接
                作者:
                Jumin Tu1,2, Guoan Zhang1, Karabi Datta2, Caiguo Xu1, Yuqing He1, Qifa Zhang1, Gurdev Singh Khush2 & Swapan Kumar Datta
                文题:
                Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin
                期刊名:
                nature
                期刊年份:
                2000
                卷(期),起止页码:
                1101 - 1104
                Doi:
                doi:10.1038/80310
                全文链接:
                http://www.nature.com/nbt/journal/v18/n10/pdf/nbt1000_1101.pdf
                数据库名称:
                Nature


                IP属地:北京16楼2014-01-12 19:36
                回复
                  其实,一些百姓闻“转”色变的担忧之一,就在于打破和添乱。
                    对此,林拥军解释:“转基因技术是一门中性技术,本身不存在安全问题。外界评价安全与否,其实是针对转基因食品。我只能讲,经严格的食品安全评价过的转基因食品是安全的。”
                    他介绍,1973年,转基因技术最早出现在美国,中国的转基因植物研究则起步于上世纪90年代初。1999年,由中央财政投入5.1亿元的 “国家转基因植物研究与产业化”专项启动,并对转基因工作实施严格的源头管理。“早期,我们就要与农业部安全评价部门取得联系,汇报打算转什么基因,只有评判转入后利大于弊才会去做。若弊大于利,干脆放弃。在此后开展的实验室研究、中间试验、环境释放、生产性试验所有过程中,我们都会不断去追踪可能产生的弊端。如果弊端不存在或在可控范围内,才会进入到后期的食用安全性评价。华农的‘华恢1号’和‘BT汕优63’两个材料在实验室被研发出来后,从中间试验到2009年拿到农业部生产应用安全证书,用了11年。”
                    没完没了的质疑
                    林拥军称,自己所研究的转基因水稻的安全风险“完全可控”,但公众的疑虑却不受他控制。
                    为此,他一退再退,乃至在国际学术会议上被外国同行责备 “为一些错误的命题做错误的科研”。
                    第一次退让是在2005年。当时,第一代“华恢1号”和“BT汕优63”已研发成功。它们的叶片、根茎和胚乳部分都含有昆虫毒性蛋白即BT蛋白。林拥军介绍,已经有无数国家无数次试验证明,BT蛋白对人体无害。然而,有人惊恐,昆虫吃了会死,人吃了会怎样?有人质疑,BT蛋白现在证明它无害,就能代表它数十年后依然无害?
                    类似的发问,常令林拥军哭笑不得。他向记者解释,昆虫毒性蛋白的杀虫谱很窄,只对鳞翅目昆虫有效,就连鞘翅目昆虫也杀不了,“我们也恨不得它能多杀点其他虫子,可指望不上啊!其实,这种专一性在大自然比比皆是,譬如许多虫子是不吃苦瓜的,因为苦瓜对那些虫子有毒,难道苦瓜就对人类有毒吗?”
                    然而,林拥军仍力求打消疑虑,于是水稻团队通过高科技,让水稻的人类食用部分即胚乳(大米就是水稻的胚乳)不含BT蛋白,只在水稻的叶、根、茎部分即昆虫食用部分表达出BT蛋白。这就是第二代抗虫水稻,2009年,水稻团队做成了。
                    孰料,又有人担心,类似抗虫基因等外源基因会通过水稻进入人体。于是水稻团队采用定向删除技术,索性丢掉了水稻胚乳部分的外源基因,也就是说,大米部分不光不含有抗虫蛋白,连抗虫基因都没有了。
                    林拥军的“隐忍”,遭到外国同行严厉批评——“你明知基因转入后是稳定的,人每天需要食用大量基因,假若外源基因都能转入人体中去的话,那人都成什么样了?”
                    林拥军何尝不懂呢?
                    人吃水稻几千年,人身上发现水稻基因了吗?其实,生物间的水平转移概率极低,否则整个生物界真要乱套了。
                    但他就是想向大众证明,“我们有这个能力和技术,可以作出令公众满意、放心的产品,消除大家的担心”。
                    他真不曾预想,一退再退后,阴谋论、利益论、不可预测论……各类质疑,变本加厉。
                    华农版的两种抗虫水稻4年前获得了农业部安全证书,这意味着此前,两种转基因水稻通过了包括环境安全检测、食用和饲用安全性检测、三代繁殖试验等重重关卡。
                    日前,当这些信息被披露后,公众首先发问:小白鼠喂养试验,为什么只有90天?
                    答案是:小白鼠的90天相当于人到中年。
                    林拥军说:“华农无权自证安全,小白鼠90天喂养试验是农业部委托第三方机构来做的。”根据华农已知信息,试验做了3代,喂养大米达5吨。
                    又有人认为“小白鼠与人差别大,试验无法证明人食用安全”。林拥军透露,农业部正委托中国农业大学做转基因大米的小型猪90天喂养试验,还委托中国医学科学院做猕猴喂养试验。但他强调:“猪和猕猴试验,是自选而非规定动作。”
                    事实上,就目前国际惯例,转基因食品和普通食品的安全性检测方法、程序是相同的。对于那些“自选动作”,严建兵告诉记者:“我不能说它是画蛇添足,但猪和猕猴这些更严格的试验已远远超出国际要求。”
                    他甚至忧心,待做完更接近人类的猕猴喂养试验,人们是否会进一步要求做人体试验,“那么,另一群人又会跳起来,怎能拿人体做试验?……这当真没完没了了。”
                    越过科学范畴的猜忌已经开始。
                    譬如林拥军称 “自己吃转基因大米已14年”,便有网友怀疑:“14年,是天天吃吗?你的小孩吃不吃?”
                    记者就这些问题向林拥军求真相,他坦言:“华农的两种抗虫转基因水稻的材料1999年就成熟了,当年我就开始吃。实话实说,刚开始进入中间试验阶段时,产量少,我吃的也少。进入生产性试验后,产量大起来,我就开始大量地吃,包括我的家人。但这绝非人体试验,我只想对比哪一个口感更好。”
                    据了解,华农水稻团队的其他成员,包括学生也经常吃转基因大米。另外,每年华农大实验室开年会,或外面专家来交流,华农在接待时都会标注好非转基因大米和华农版转基因大米,由与会者自由选择。转基因大米还作为福利,生命科学技术学院100来号教师每年能发到两包,但严建兵大搞各类品尝会后,这个福利打了对折。
                    


                  IP属地:北京19楼2014-01-12 19:41
                  回复
                    常见转基因作物(食用)







                    IP属地:北京21楼2014-01-12 19:50
                    回复
                      度娘说我发帖太勤那我就歇歇。。


                      IP属地:北京22楼2014-01-12 19:55
                      收起回复
                        Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis
                        米国前几年做的一个关于转基因作物对非靶标生物——帝王王蝶幼虫的影响。请了各方面的专家,历时2年完成的一个工作报告
                        http://hao.360.cn/?z100


                        IP属地:北京27楼2014-01-12 21:00
                        回复