__________百度百科介绍___________
百科名片
按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。
概念
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个“定义域为正整数集N*或其有限子集{1,2,3,…,n}"的函数,其中的”{1,2,3,…,n“不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
数列的一般形式可以写成
a1,a2,a3,…,an,a(n+1),…
简记为{an},
项数有限的数列为“有穷数列”(finite sequence),
项数无限的数列为“无穷数列”(infinite sequence)。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。
数列中的项必须是数,它可以是实数,也可以是复数。
用符号{an}表示数列,只不过是“借用”**的符号,它们之间有本质上的区别:1.**中的元素是互异的,而数列中的项可以是相同的。2.**中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。
表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)
数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式
百科名片
按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。
概念
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个“定义域为正整数集N*或其有限子集{1,2,3,…,n}"的函数,其中的”{1,2,3,…,n“不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
数列的一般形式可以写成
a1,a2,a3,…,an,a(n+1),…
简记为{an},
项数有限的数列为“有穷数列”(finite sequence),
项数无限的数列为“无穷数列”(infinite sequence)。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。
数列中的项必须是数,它可以是实数,也可以是复数。
用符号{an}表示数列,只不过是“借用”**的符号,它们之间有本质上的区别:1.**中的元素是互异的,而数列中的项可以是相同的。2.**中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。
表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)
数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式