数学吧 关注:906,062贴子:8,808,622

难题!!求帮助

收藏回复

1.If f(x)=x² if x is rational,f(x)=0 if x is irrational,prove that lim x→0f(x)=0.
2.If p polynomial(多项式),prove that lim x→a p(x)=p(a)
高手帮帮忙啊!!能不能也用英语回答


1楼2011-01-07 18:18回复
    高手对于英语也无能为力啊


    2楼2011-01-07 18:20
    回复
      2025-06-07 01:49:56
      广告

      About the first question
      Prove:think of   |x|<1 ε>0,
      then
      if x is rational, |f(x)|= |x|2<|x|<ε; if x is irrational, obviously,|f(x)|=0<ε.
      last so we could get this
      δ=ε, while |x|<δ, |f(x)|<ε, as this, lim x→0f(x)=0 is proved
      i"m such a lazy guy
      so
      let someone else help you solve the nxet problem  
      


      3楼2011-01-07 18:32
      回复

        原谅我每层楼只能插一张图片  
        这种类似的题目其实还可以就是你是刚刚接触吧
        这是影印版微积分上的嘛 的确有点麻烦的还有不懂的你可以加我QQ问 这里说麻烦
        补充刚刚的
        last ,so we could get this
        δ=ε, while |x|<δ, |f(x)|<ε, as this, lim x→0f(x)=0 is proved
        


        4楼2011-01-07 18:36
        回复

          好厉害好厉害我爱死你了 谢谢谢谢谢谢


          5楼2011-01-07 18:43
          回复
            回复:4楼
            是影印版微积分!!!!!太感谢你了 能给我一下你QQ吗,我拜你为师!!!


            6楼2011-01-07 18:44
            回复
              Let p(x)=(c_n)x^n+...(c_1)x+c_0 be a polynomial.
              Since lim_{x→a}f(x)g(x)=lim_{x→a}f(x)*lim_{x→a}g(x) as long as both the two limits at the right side exist, we have lim_{x→a}(c_k)x^k=(lim_{x→a}c_k)(lim_{x→a}x)^k=(c_k)a^k for any positive integer k.
              Moreover, since lim_{x→a}(f(x)+g(x))=lim_{x→a}f(x)+lim_{x→a}g(x) as long as both the two limits at the right side exist, we have lim_{x→a}p(x)=∑_{k=0 to n}lim_{x→a}(c_k)x^k=∑_{k=0 to n}(c_k)a^k=p(a)
              


              IP属地:天津8楼2011-01-07 18:49
              回复
                回复:6楼
                你膜拜8楼的就好 人家才是大湿


                9楼2011-01-07 18:55
                回复
                  2025-06-07 01:43:56
                  广告
                  奇怪7楼呢?


                  IP属地:山东10楼2011-01-07 18:56
                  回复
                    回复:8楼
                    拜你为师吧!!!!!!!! 谢谢谢谢


                    11楼2011-01-07 18:57
                    回复
                      回复:9楼
                      谢谢!!能否给我一个QQ?


                      12楼2011-01-07 18:58
                      回复
                        回复:10楼
                        我也想知道


                        13楼2011-01-07 19:01
                        回复
                          回复:12楼
                          想了想我还是不能误了你孩子向前看齐吧


                          14楼2011-01-07 19:02
                          回复
                            同14楼


                            IP属地:天津15楼2011-01-07 19:03
                            回复
                              2025-06-07 01:37:56
                              广告
                              都太了不起了


                              16楼2011-01-08 09:14
                              回复