
1. 四边形 OBAC 的内角和为 360° ,即 (φ - θ) + 90° + β + (180° - γ + 90°) =
360° , 化简得 方程(1) φ + β = θ + γ
2. 两条平行线的同旁内角相加为 180° ,即 (α + β) + (180° - 2γ) = 180° ,即 方
程(2) α + β = 2γ
3. 由于 AO = h + r ,同时又有 AO = AD + DO = D·sinφ + r·cosφ ,因此有 方
程(3) h + r = D·sinφ + r·cosφ
4. BD 既可以等于 D·cosφ ,又可以等于 r·sinφ ,于是有 方程(4) D·cosφ =
r·sinφ
5. 由于 AO = h + r ,同时又有 AO = AE + EO = d·sin(γ+θ) + r·cosθ ,因此有 方
程(5) h + r = d·sin(γ+θ) + r·cosθ
6. CE 既可以等于 d·cos(γ+θ) ,又可以等于 r·sinθ ,于是有 方程(6)
d·cos(γ+θ) = r·sinθ
一系列复杂的代数运算(省略数百字)最终告诉我们:
r = h / (√1 -
2·cosβ·cosγ + cos2γ / sinβ - 1)
其中 γ = (α + β)/2 。代入已知的 α 、 β 和 h 可以得到,地球半径 r 大约为 7.29312 * 106 米,也即 7293 千米。
这个估算的误差有多大呢?事实上,地球的半径大约为 6300
多千米,可见误差不是一般的大。不过,考虑到我们估算的依据仅仅是一张照片,能把数量级估对就已经相当牛 B
了。除了测量的精度之外,还有很多潜在的因素会导致误差。目前看来,误差的最主要来源似乎是不完全平静的水面——一点小小的波浪就会给 α 、 β
的值带来巨大的影响。