f的偏导数为$\frac{1}{xy}$。这是因为,由泰勒展开式可知,当$y>0,x\neq0$时,有$f=log_yx=\frac{d}{dx}=y^x\cdot\frac{d}{dx}=y^x\cdotx^{x-1}\cdotlnx$。由此,有f=$y^x\cdotx^{x-1}\cdot\frac{1}{x}+y^x\cdotx^{x-1}\cdotlnx\cdot\cdot\frac{1}{x^2}=\frac{1}{xy}$。此外,有$f=\frac{x^x}{y^y}$,我们也可以从右端开始求偏导数,记$g=\frac{x^x}{y^y}$,则$g’=\frac{d}{dx}=\frac{x^x\cdot\frac{d}{dx}-y^y\cdot\frac{d}{dx}}{^2}=\frac{x^x\cdotx^{x-1}\cdotlnx-y^y\cdoty^{y-1}\cdotlny}{^2}=\frac{x^x\cdotx^{x-1}\cdotlnx-y^x\cdoty^{y-1}\cdotlny}{^2}=\frac{x^x\cdotx^{x-1}\cdotlnx-y^x\cdoty^{y-1}\cdotlny}{y^{2y}}=\frac{1}{xy}=f’$。从上面计算可知,f的偏导数就是$\frac{1}{xy}$。而当x趋向于无穷大时,f的偏导数也将趋近于无穷大,表明f在x趋向于无穷大时的函数增长趋势具有非常大的斜率。