网页资讯视频图片知道文库贴吧地图采购
进入贴吧全吧搜索

 
 
 
日一二三四五六
       
       
       
       
       
       

签到排名:今日本吧第个签到,

本吧因你更精彩,明天继续来努力!

本吧签到人数:0

一键签到
成为超级会员,使用一键签到
一键签到
本月漏签0次!
0
成为超级会员,赠送8张补签卡
如何使用?
点击日历上漏签日期,即可进行补签。
连续签到:天  累计签到:天
0
超级会员单次开通12个月以上,赠送连续签到卡3张
使用连续签到卡
06月09日漏签0天
河南it培训吧 关注:523贴子:7,053
  • 看贴

  • 图片

  • 吧主推荐

  • 游戏

  • 0回复贴,共1页
<<返回河南it培训吧
>0< 加载中...

finalize的原理和工作缺点是什么?【Java面试题】

  • 只看楼主
  • 收藏

  • 回复
  • 云和数据2017
  • 铁杆吧友
    9
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.9182. 但是很明显这么分类,最后出现的结果不具有泛化效果.无法对新样本进行有效预测.
实际上,信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法 [Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分属性.
增益率:增益率是用前面的信息增益Gain(D, a)和属性a对应的"固有值"(intrinsic value) [Quinlan , 1993J的比值来共同定义的。

属性 a 的可能取值数目越多(即 V 越大),则 IV(a) 的值通常会越大.
案例一
a.计算类别信息熵
b.计算性别属性的信息熵(性别、活跃度)
c.计算活跃度的信息增益(性别、活跃度)
d.计算属性分裂信息度量
用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益/内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。

e.计算信息增益率

活跃度的信息增益率更高一些,所以在构建决策树的时候,优先选择
通过这种方式,在选取节点的过程中,我们可以降低取值较多的属性的选取偏好。


登录百度账号

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!
  • 贴吧页面意见反馈
  • 违规贴吧举报反馈通道
  • 贴吧违规信息处理公示
  • 0回复贴,共1页
<<返回河南it培训吧
分享到:
©2025 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示