大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据的特点
具体来说,大数据具有4个基本特征:
一是数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
1 浅谈数据科学
数据科学(Data Science)这一概念自大数据崛起也随之成为数据领域的讨论热点,从去年开始,“数据科学家”便成为了一个工作职位出现在各种招聘信息上。那么究竟什么是数据科学?大数据和数据科学又是什么关系?大数据在数据科学中起到怎样的作用?本文主要是想起到科普作用,使即将或正在从事数据工作的朋友对数据科学工作有一个全概貌了解,也使各有想法进入大数据领域的朋友在真正从事大数据工作之前对行业的情况有所知晓。数据科学是一个混合交叉学科(如下图所示),要完整的成为一个数据科学家,就需要具备较好的数学和计算机知识,以及某一个专业领域的知识。所做的工作都是围绕数据打转转,在数据量爆发之后,大数据被看做是数据科学中的一个分支。
2 浅谈大数据
大数据(Big Data)其实已经兴起好些年了,只是随着无处不在的传感器、无处不在的数据埋点,获取数据变得越来越容易、量越来越大、内容越来越多样化,于是原来传统的数据领域不得不思考重新换一个平台可以处理和使用逐渐庞大数据量的新平台。用以下两点进一步阐述:
吴军博士提出的一个观点:现有产业+新技术=新产业,大数据也符合这个原则,只是催生出来的不仅仅是一个新产业,而是一个完整的产业链:原有的数据领域+新的大数据技术=大数据产业链;
数据使用的范围,原来的数据应用主要是从现有数据中的数据中进行采样,再做数据挖掘和分析,发掘出数据中的潜在规则用以预测或决策,然而采样始终会舍弃一部分数据,即会丢失一部分潜在规则和价值,随着数据量和内容的不断累积,企业越来越重视在数据应用时可以使用全量数据,可以尽可能的覆盖所有潜在规则从而发掘出可能想到或从未想到的价值。
如下图所示,大数据领域可以分为以下几个主要方向:
1 数据平台
Data Platform,构建、维护稳定、安全的大数据平台,按需设计大数据架构,调研选型大数据技术产品、方案,实施部署上线。对于大数据领域涉及到的大多数技术都需要求有所了解,并精通给一部分,具备分布式系统的只是背景。
2 数据采集
Data Collecting,从Web/Sensor/RDBMS等渠道获取数据,为大数据平台提供数据来源,如Apache Nutch是开源的分布式数据采集组件,大家熟知的Python爬虫框架ScraPy等。
3 数据仓库
Data Warehouse,有点类似于传统的数据仓库工作内容:设计数仓层级结构、ETL、进行数据建模,但基于的平台不一样,在大数据时代,数据仓库大多基于大数据技术实现,例如Hive就是基于Hadoop的数据仓库。
4 数据处理
Data Processing,完成某些特定需求中的处理或数据清洗,在小团队中是结合在数据仓库中一起做的,以前做ETL或许是利用工具直接配置处理一些过滤项,写代码部分会比较少,如今在大数据平台上做数据处理可以利用更多的代码方式做更多样化的处理,所需技术有Hive、Hadoop、Spark等。BTW,千万不要小看数据处理,后续的数据分析、数据挖掘等工作都是基于数据处理的质量,可以说数据处理在整个流程中有特别重要的位置。
5 数据分析
Data Analysis,基于统计分析方法做数据分析:例如回归分析、方差分析等。大数据分析例如Ad-Hoc交互式分析、SQL on Hadoop的技术有:Hive 、Impala、Presto、Spark SQL,支持OLAP的技术有:Kylin
大数据的特点
具体来说,大数据具有4个基本特征:
一是数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
1 浅谈数据科学
数据科学(Data Science)这一概念自大数据崛起也随之成为数据领域的讨论热点,从去年开始,“数据科学家”便成为了一个工作职位出现在各种招聘信息上。那么究竟什么是数据科学?大数据和数据科学又是什么关系?大数据在数据科学中起到怎样的作用?本文主要是想起到科普作用,使即将或正在从事数据工作的朋友对数据科学工作有一个全概貌了解,也使各有想法进入大数据领域的朋友在真正从事大数据工作之前对行业的情况有所知晓。数据科学是一个混合交叉学科(如下图所示),要完整的成为一个数据科学家,就需要具备较好的数学和计算机知识,以及某一个专业领域的知识。所做的工作都是围绕数据打转转,在数据量爆发之后,大数据被看做是数据科学中的一个分支。
2 浅谈大数据
大数据(Big Data)其实已经兴起好些年了,只是随着无处不在的传感器、无处不在的数据埋点,获取数据变得越来越容易、量越来越大、内容越来越多样化,于是原来传统的数据领域不得不思考重新换一个平台可以处理和使用逐渐庞大数据量的新平台。用以下两点进一步阐述:
吴军博士提出的一个观点:现有产业+新技术=新产业,大数据也符合这个原则,只是催生出来的不仅仅是一个新产业,而是一个完整的产业链:原有的数据领域+新的大数据技术=大数据产业链;
数据使用的范围,原来的数据应用主要是从现有数据中的数据中进行采样,再做数据挖掘和分析,发掘出数据中的潜在规则用以预测或决策,然而采样始终会舍弃一部分数据,即会丢失一部分潜在规则和价值,随着数据量和内容的不断累积,企业越来越重视在数据应用时可以使用全量数据,可以尽可能的覆盖所有潜在规则从而发掘出可能想到或从未想到的价值。
如下图所示,大数据领域可以分为以下几个主要方向:
1 数据平台
Data Platform,构建、维护稳定、安全的大数据平台,按需设计大数据架构,调研选型大数据技术产品、方案,实施部署上线。对于大数据领域涉及到的大多数技术都需要求有所了解,并精通给一部分,具备分布式系统的只是背景。
2 数据采集
Data Collecting,从Web/Sensor/RDBMS等渠道获取数据,为大数据平台提供数据来源,如Apache Nutch是开源的分布式数据采集组件,大家熟知的Python爬虫框架ScraPy等。
3 数据仓库
Data Warehouse,有点类似于传统的数据仓库工作内容:设计数仓层级结构、ETL、进行数据建模,但基于的平台不一样,在大数据时代,数据仓库大多基于大数据技术实现,例如Hive就是基于Hadoop的数据仓库。
4 数据处理
Data Processing,完成某些特定需求中的处理或数据清洗,在小团队中是结合在数据仓库中一起做的,以前做ETL或许是利用工具直接配置处理一些过滤项,写代码部分会比较少,如今在大数据平台上做数据处理可以利用更多的代码方式做更多样化的处理,所需技术有Hive、Hadoop、Spark等。BTW,千万不要小看数据处理,后续的数据分析、数据挖掘等工作都是基于数据处理的质量,可以说数据处理在整个流程中有特别重要的位置。
5 数据分析
Data Analysis,基于统计分析方法做数据分析:例如回归分析、方差分析等。大数据分析例如Ad-Hoc交互式分析、SQL on Hadoop的技术有:Hive 、Impala、Presto、Spark SQL,支持OLAP的技术有:Kylin