在前面的内容里,我们已经学习了循环神经网络的基本结构和运算过程,这一小节里,我们将用TensorFlow实现简单的RNN,并且用来解决时序数据的预测问题,看一看RNN究竟能达到什么样的效果,具体又是如何实现的。
在这个演示项目里,我们使用随机生成的方式生成一个数据集(由0和1组成的二进制序列),然后人为的增加一些数据间的关系。最后我们把这个数据集放进RNN里,让RNN去学习其中的关系,实现二进制序列的预测1。数据生成的方式如下:
循环生成规模为五十万的数据集,每次产生的数据为0或1的概率均为0.5。如果连续生成了两个1(或两个0)的话,则下一个数据强制为0(或1)。
---------------------
作者:磐创 AI
来源:CSDN
原文:https://blog.csdn.net/fendouaini/article/details/84109521
版权声明:本文为博主原创文章,转载请附上博文链接!
在这个演示项目里,我们使用随机生成的方式生成一个数据集(由0和1组成的二进制序列),然后人为的增加一些数据间的关系。最后我们把这个数据集放进RNN里,让RNN去学习其中的关系,实现二进制序列的预测1。数据生成的方式如下:
循环生成规模为五十万的数据集,每次产生的数据为0或1的概率均为0.5。如果连续生成了两个1(或两个0)的话,则下一个数据强制为0(或1)。
---------------------
作者:磐创 AI
来源:CSDN
原文:https://blog.csdn.net/fendouaini/article/details/84109521
版权声明:本文为博主原创文章,转载请附上博文链接!