几何法很简明。试试暴力计算:
记AB = AC = p > 1,c = cos(C),s = sin(C)
三角形BCD中,余弦定理,BD^2 = 2 = 1+(p-1)^2-2(p-1)c
三角形ABC中,pc = BC/2 = 1/2,或 c = 1/(2p)
利用上面两个方程消去c得到:p^3 = 2p^2+p-1
并且 p^4 = 5p^2+p-2;p^5 = 11p^2+3p-5
计算
cos(3C) = 4c^3-3c = (1-3p^2)/(2p^3)
sin(3C) = s(4c^2-1 = s(1-p^2)/p^2
sin(6C) = 2sin(3C)cos(3C) = s(3p^4-4p^2+1)/p^5 = s =sin(C) => 2cos(7C/2)sin(5C/2) = 0
因为p > 1,C > Π/3,所以C = 3Π/7。
另外当BD = sqrt(3),∠C不是特殊值。