民科吧 关注:358,936贴子:4,858,437
  • 26回复贴,共1

用科学规律来证明——调和级数

只看楼主收藏回复

是欧拉最早给出来的调和级数公式,∑1/n≈lnn+c,记住:这里是≈,作为≈它也没有错,因为它的最大误差没有超过:0.6.
欧拉给出来的常数是一个固定的常数,但实际的常数是一个变化的:
.....N.........................∑............................lnn..............................标准的变化常数
....1......................1.00000.......................0......................................1.00000
.....2.....................1.50000...................0.67932................................0.80285
.....3.....................1.83333...................1.09861................................0.73472
.....4.....................2.83333...................1.38629................................0.69704
.....5.....................2.28333....................1.60944...............................0.67389
.....6.....................2.45000....................1.79176................................0.65824
.....7.....................2.59286.....................1.94591...............................0.64695
.....8.....................2.71786.....................2.07944...............................0.63842
.....9.....................2.82897.....................2.19722...............................0.63275
....10....................2.92897.....................2.30259...............................0.62638
.....20...................3.59774.....................2.99573...............................0.60201
.....30...................3.99499.....................3.40120...............................0.59379
.....40...................4.27854......................3.68888..............................0.58966
.....50...................4.49921......................3.91202..............................0.58719
.....60...................4.67987......................4.09435..............................0.58719
.....70...................4.83284......................4.24850..............................0.58434
.....80...................4.96548......................4.38203..............................0.58345
.....90...................5.08257......................4.49981..............................0.58276
....100..................5.18738......................4.60517...............................0.58221
.....200.................5.87803......................5.29831...............................0.57972
.....300.................6.28266......................5.70378...............................0.57888
.....400.................6.56993......................5.99146...............................0.57847
.....500.................6.79282......................6.21460...............................0.57822
.....600.................6.97498......................6.39693...............................0.57805
.....700.................7.12901......................6.55108...............................0.57793
.....800.................7.26245......................6.68461...............................0.57784
.....900.................7.38017......................6.80240...............................0.57777
....1000................7.48547......................6.90776...............................0.57771
....2000................8.17837......................7.60092...............................0.57745
....3000...............8.58375.......................8.00637...............................0.57738
常数会越来越小,最后就等于零了,这是实际常数的变化,这是数学规律,你是没有办法否定的。
作为欧拉来说,他们那个时代科技是非常的落后的,没有电脑,没有计算器,也没有前人的借鉴,他就不可能对调和级数,有一个完美的认识,这是可以理解的。我们现在科技非常的先进了,又有了前人的借鉴,我们高于欧拉也是正常的。反过来,我们不能站在他的高度去完善他的理论,而是盲目的迷信他的理论,那反而就不正常了。
科学就是在不断的完善前人的不足,而不断前进的!


1楼2018-07-05 11:38回复
    欧拉发明了一个调和级数的求和公式,同时也把调和级数引向了它的反面,下面用实算证明:
    ∑1/n=1+0.5+0.3333+0.25+0.2 → 0,
    ∑lnn+c=0.577+1.27+1.67+1.96 → ∞,
    看看,一个驱近于零的数值,变成了一个驱向于无穷大的式子。一般来说,驱近于零的数值是收敛的式子;驱向于无穷大的式子,就是发散的式子。这样就面对了一个问题,调和级数到底是收敛的,还是发散的。
    由于受一些纯数学的影响,比如:兔子永远追不上乌龟的,无限级数,永远会的数值的产生,等等,有的人就会认为调和级数应该是发散的,也用一种类比的方法证明了调和级数是发散的。
    这样证明调和级数发散的式子就越来越多。我想在历史上肯定也有证明,调和级数是收敛的式子,由于在众多的证明调和级数发散的式子中,被打压下去了。留给我们的就只能是,调和级数发散的式子。现在看来,有二十多种。
    其实这二十多种证明调和级数发散的式子,都只能算是左证,因为它们是采用类比的方法和近似的方法来证明的,也就是说用别的一些数学手段来证明它。而不是用自身的规律,来证明自身。
    看起来很吓人的,二十多种方法。其实用实算法和数学规律,分分钟就把它们都证伪了。


    2楼2018-07-05 11:38
    回复
      调和级数真要辩证看待,对于数学理论来说,发散。对于实际问题来说,收敛


      来自Android客户端6楼2018-07-05 12:10
      回复
        欧拉公式:(k=1,n)∑1/k=lnn+c
        用你臆想的欧拉公式来攻击欧拉,惨无人道!


        IP属地:浙江7楼2018-07-05 13:02
        收起回复
          不懂装懂的两种人,与三江方士有一比。


          来自手机贴吧8楼2018-07-05 13:06
          收起回复
            美国有一名句:无理攻击你的人越多,越证明你的成就伟大!


            IP属地:湖北9楼2018-07-05 13:16
            回复(2)
              我们说话都是有根据的:

              看清楚:∑1/n≈lnn+c。


              IP属地:湖北10楼2018-07-05 16:53
              收起回复
                欧拉给出来的常数是一个固定的常数,但实际的常数是一个变化的:
                .....N.........................∑............................lnn..............................标准的变化常数
                ....1......................1.00000.......................0......................................1.00000
                .....2.....................1.50000...................0.67932................................0.80285
                .....3.....................1.83333...................1.09861................................0.73472
                .....4.....................2.83333...................1.38629................................0.69704
                .....5.....................2.28333....................1.60944...............................0.67389
                .....6.....................2.45000....................1.79176................................0.65824
                .....7.....................2.59286.....................1.94591...............................0.64695
                .....8.....................2.71786.....................2.07944...............................0.63842
                .....9.....................2.82897.....................2.19722...............................0.63275
                ....10....................2.92897.....................2.30259...............................0.62638
                .....20...................3.59774.....................2.99573...............................0.60201
                .....30...................3.99499.....................3.40120...............................0.59379
                .....40...................4.27854......................3.68888..............................0.58966
                .....50...................4.49921......................3.91202..............................0.58719
                .....60...................4.67987......................4.09435..............................0.58719
                .....70...................4.83284......................4.24850..............................0.58434
                .....80...................4.96548......................4.38203..............................0.58345
                .....90...................5.08257......................4.49981..............................0.58276
                ....100..................5.18738......................4.60517...............................0.58221
                .....200.................5.87803......................5.29831...............................0.57972
                .....300.................6.28266......................5.70378...............................0.57888
                .....400.................6.56993......................5.99146...............................0.57847
                .....500.................6.79282......................6.21460...............................0.57822
                .....600.................6.97498......................6.39693...............................0.57805
                .....700.................7.12901......................6.55108...............................0.57793
                .....800.................7.26245......................6.68461...............................0.57784
                .....900.................7.38017......................6.80240...............................0.57777
                ....1000................7.48547......................6.90776...............................0.57771
                ....2000................8.17837......................7.60092...............................0.57745
                ....3000...............8.58375.......................8.00637...............................0.57738
                这是数学规律,你们是没有办法否定的。


                11楼2018-07-05 17:42
                收起回复
                  用快算法得出来的收敛结果:
                  .......N.........................∑...........................lnn...........................变化常数
                  ....4000..................8.87075.................8.29405......................0.57670
                  ....5000..................9.09342.................8.51719......................0.57623
                  ....6000..................9.27515.................8.69952......................0.57563
                  ....7000..................9.42882.................8.85367......................0.57515
                  ....8000..................9.56196.................8.98719.......................0.57487
                  ....9000..................9.67958.................9.10498.......................0.57460
                  ....一万...................9.78467.................9.21034.......................0.57433
                  ....二万..................10.47584................9.90349.......................0.57235
                  ....三万..................10.87719...............10.30895......................0.56824
                  ....四万..................11.16213...............10.59663......................0.56550
                  ....五万..................11.38340...............10.81978......................0.56362
                  ....六万..................11.56438...............11.00210......................0.56228
                  ...七万...................11.71740...............11.15625......................0.56115
                  ...八万...................11.85016...............11.28978......................0.56036
                  ...九万...................11.96733...............11.40757......................0.55976
                  ...十万...................12.07219...............11.51293......................0.55926
                  ..二十万................12.76336...............12.20678......................0.55658
                  ..三十万................13.16471...............12.61154......................0.55317
                  ..四十万................13.44965...............12.89922......................0.55043
                  ..五十万................13.67092...............13.12236......................0.54856
                  ..六十万................13.85190...............13.30469......................0.54721
                  ..七十万................14.00502...............13.45884......................0.54618
                  ..八十万................14.13778...............13.59237......................0.54541
                  ..九十万.................14.25495..............13.71015......................0.54480
                  ...百万...................14.35981...............13.81551......................0.54430
                  ..二百万................15.05098................14.50866.....................0.54232
                  ..三百万................15.45233................14.91412.....................0.53821
                  ..四百万................15.73727................15.20181.....................0.53546
                  .....N...........................∑...........................lnn.............................变化化常数
                  ..四十亿................22.59913................22.10956........................0.48957
                  ..五十亿................22.82040................22.33275........................0.48765
                  ..六十亿................23.00138................22.51503........................0.48635
                  ..七十亿................23.15450................22.66960........................0.48490
                  ..八十亿................23.28726................22.80271........................0.48455
                  ..九十亿................23.40443................22.92049........................0.48394
                  ....百亿.................23.50929................23.02585........................0.48344
                  ..二百亿...............24.20046.................23.71900........................0.48146
                  ..三百亿...............24.60181.................24.12445........................0.47736
                  ..四百亿...............24.88675.................24.41215........................0.47460
                  ..五百亿...............25.10802.................24.63629........................0.47273
                  ..六百亿...............25.28900................24.81761.........................0.47139
                  ..七百亿...............25.44212................25.10559.........................0.47036
                  ..八百亿...............25.57488................25.10559.........................0.46959
                  ..九百亿...............25.69205................25.22308.........................0.46897
                  ...千亿.................25.79691.................25.32844.........................0.46847
                  ..二千亿..............25.48808.................26.02158..........................0.46650
                  ..三千亿..............26.88943.................26.42705..........................0.46238
                  ..四千亿..............27.17437.................26.71473..........................0.45964
                  ..五千亿..............27.39564.................26.93787..........................0.45777
                  ..六千亿..............27.57662.................27.12020..........................0.45642
                  ..七千亿..............27.72974.................27.27435..........................0.45539
                  ..八千亿..............27.86250.................27.40788..........................0.45462
                  ...九千亿.............27.97967.................27.52366..........................0.45401
                  ...万亿.................28.06453................27.63102..........................0.45351
                  ...二万亿.............28.77570.................28.32417..........................0.45153
                  ..三万亿..............29.17705.................28.72963..........................0.44742
                  .....N..................................∑..................................lnn................................变化常数
                  ..二亿亿兆..................74.42497........................74.37587..........................0.04910
                  ..三亿亿兆..................74.82520........................74.78134..........................0.04386
                  ..四亿亿兆..................75.10958........................75.06902..........................0.04056
                  ..五亿亿兆..................75.33051........................75.29216..........................0.03835
                  ..六亿亿兆..................75.51126........................75.47448..........................0.03678
                  ..七亿亿兆..................75.66424........................75.62833..........................0.03591
                  ..八亿亿兆..................75.79687........................75.76217..........................0.03470
                  ..九亿亿兆..................75.91393........................75.98531..........................0.03399
                  ..十亿亿兆..................76.01871........................75.98531..........................0.03340
                  ..二十兆兆..................76.70713........................76.67846..........................0.02567
                  ..三十兆兆..................77.10737........................77.08392..........................0.02345
                  ..四十兆兆..................77.39175........................77.37160..........................0.02016
                  ..五十兆兆..................77.61268........................77.59475..........................0.01793
                  .六十兆兆...................77.79343........................77.77707..........................0.01536
                  .七十兆兆..................77.94641.........................77.93122..........................0.01519
                  .八十兆兆..................78.07904.........................78.06496..........................0.01408
                  .九十兆兆..................78.19610.........................78.18253..........................0.01357
                  .百亿亿兆..................78.30088.........................78.28787..........................0.01299
                  .二百兆兆..................78.98830.........................78.98104..........................0.00726
                  .三百兆兆..................79.38859.........................79.28651..........................0.00208
                  .四百兆兆..................79.67297.........................79.67419..........................0.00000
                  通过快算法就能看出来,常数是一个变化的,由1一步步的驱近于零,这就是它的数学规律,这是没有办法否定的。当变化常数为零的时候就收敛了!


                  12楼2018-07-05 17:49
                  回复(1)
                    你这贴不是五年前发过吗


                    来自Android客户端13楼2018-07-05 18:13
                    收起回复
                      什么是左证,就是借用别的数学手段来证明:
                      ∑1/n>∑1/2,
                      ∑1/n>ln(n+1),
                      ∑1/n>∫1/xdx,
                      ..................
                      利用这样的不等式,左边的大于右边的,然后在证明右边的是发散的,然后推理出来左边也是发散的。事实上这样的左证法是违反逻辑的,因为它们并不是同性质的。
                      ∑1/n=1+0.5+0.3333+0.25+0.2 → 0,
                      ∑1/2=1/2+1/2+1/2+1/2 →1/2,
                      S=ln(n+1)=0.619+1.09+1.39 →∞,
                      S=lnn+c=0.577+1.27+1.67+1.96 → ∞,
                      这样也能看出来,他们的性质是相反的,相反的性质是不能进行类比的,不然就违反了逻辑规律。
                      ∑1/2也只能通过玩小把戏,才能让它大于∑1/n,那事实上就是一种骗局;
                      ln(n+1)这个也只是在开始一段时间内小于∑1/n,当超过四百兆兆后,就开始在于∑1/n;
                      左证只是理论上的证明,这种理论上的证明还不能违反逻辑规律,违反了逻辑规律必然会是错误的。
                      再说理论证明,并不是全过程的展示,所以,它也没有什么说服力。
                      后面还会一个个的来揭穿它们的骗局。


                      15楼2018-07-06 07:32
                      回复