其实早期的安检设备是采用单个X射线发射源,图像处理也比较单一,还是黑白影像。(其实相当多医用、科研用X射线仪器都是黑白像)。这还不算什么,早期安检设备的最大缺点,是由于X射线的衰减与被测物质的密度、厚度和平均原子序数都有关系,当多重因素叠加影响时就很难判断了。
比如,在安检过包时,透射后得到的数据图像是不能很好地对一个高原子序数、低厚度的物品与一个低原子序数但是高厚的物品进行有效区分的。
而现在的安检设备已经采用多个发射源进行多视角的立体成像,而且图像处理也能彩色显示。这主要是由于双能系统的不断开发升级。
而双能系统一般由一个连续能谱的X射线源及一套能够分别接收高低能数据的探测器系统组成。对于高能和低能,不同平均原子序数的物质的衰减程度是不一样的--低原子序数的物质衰减剧烈,高原子序数的物质衰减平缓。
因此在双能系统中,高能和低能在同一种物质中的衰减程度是不一样的,通过对高能和低能不同衰减系数的运算和比较,就可将不同种类、不同厚度的物质有效地区分开来。再配合上后期图像信号处理,就能很明显反映出物体的成分和结构。
简单来说,橙色代表有机物,例如食品、水、塑料等;书本、陶瓷等显示为绿色;金属则显示为蓝色。这时,安检员快速查看X射线扫描的透视图像,就能凭借丰富的经验判断是否有违禁品。
因此,在整个检测过程中,处理控制、电源、传送之外,安检最核心的部件便是由3个系统组成--X射线发射系统、信号探测系统、图像处理系统。
比如,在安检过包时,透射后得到的数据图像是不能很好地对一个高原子序数、低厚度的物品与一个低原子序数但是高厚的物品进行有效区分的。
而现在的安检设备已经采用多个发射源进行多视角的立体成像,而且图像处理也能彩色显示。这主要是由于双能系统的不断开发升级。
而双能系统一般由一个连续能谱的X射线源及一套能够分别接收高低能数据的探测器系统组成。对于高能和低能,不同平均原子序数的物质的衰减程度是不一样的--低原子序数的物质衰减剧烈,高原子序数的物质衰减平缓。
因此在双能系统中,高能和低能在同一种物质中的衰减程度是不一样的,通过对高能和低能不同衰减系数的运算和比较,就可将不同种类、不同厚度的物质有效地区分开来。再配合上后期图像信号处理,就能很明显反映出物体的成分和结构。
简单来说,橙色代表有机物,例如食品、水、塑料等;书本、陶瓷等显示为绿色;金属则显示为蓝色。这时,安检员快速查看X射线扫描的透视图像,就能凭借丰富的经验判断是否有违禁品。
因此,在整个检测过程中,处理控制、电源、传送之外,安检最核心的部件便是由3个系统组成--X射线发射系统、信号探测系统、图像处理系统。