图形1:
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 0.2;
pr1 = (c (6 - 7 \[Beta] + \[Beta]^2) -
2 (-6 + \[Beta] + 2 \[Beta]^2))/(4 (-1 + \[Beta]) (-4 + \[Beta]^2));
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s1 = Show[
Plot[pr1, {\[Lambda], 0, 1}, PlotStyle -> {Black},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
图形2:
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 0.5;
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s2 = Show[
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
图形3:
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 1;
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s3 = Show[
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
将图形1、2、3用Show函数合并:
Show[s1, s2, s3, PlotRange -> {{0, 1}, {1.27, 1.38}}]
明显多了一条线?这是为何?该如何处理??
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 0.2;
pr1 = (c (6 - 7 \[Beta] + \[Beta]^2) -
2 (-6 + \[Beta] + 2 \[Beta]^2))/(4 (-1 + \[Beta]) (-4 + \[Beta]^2));
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s1 = Show[
Plot[pr1, {\[Lambda], 0, 1}, PlotStyle -> {Black},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.33, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
图形2:
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 0.5;
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s2 = Show[
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.3, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
图形3:
Clear[\[Delta]];
\[Beta] = 0.5; c = 0.1;
\[Delta] = 1;
pr2 = (c (-1 + \[Beta]) (-6 + \[Beta] - 10 \[Delta] +
2 \[Beta] \[Delta]) -
2 (-6 - 8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 +
3 \[Delta])))/(
2 (-1 + \[Beta]) (-4 + \[Beta]^2) (2 + 3 \[Delta]));
pr3 = (-8 (3 + 7 \[Delta] + 4 \[Delta]^2) -
2 \[Beta]^4 \[Delta] \[Lambda] (2 + \[Delta] (2 + \[Lambda])) +
2 \[Beta] (1 + \[Delta]) (-4 + \[Delta] (-6 +
7 \[Lambda])) + \[Beta]^2 (10 +
14 \[Delta]^2 (1 + \[Lambda]) + \[Delta] (24 +
13 \[Lambda])) + \[Beta]^3 (4 -
5 \[Delta] (-2 + \[Lambda]) -
2 \[Delta]^2 (-3 + 2 \[Lambda] + \[Lambda]^2)) +
c (-1 + \[Beta]) (4 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^4 \[Delta]^2 \[Lambda]^2 + \[Beta]^3 \[Delta] \
\[Lambda] (-1 + \[Delta] (-2 + 4 \[Lambda])) -
2 \[Beta] (1 + \[Delta]) (-2 + \[Delta] (-3 +
5 \[Lambda])) - \[Beta]^2 (1 +
2 \[Delta]^2 (1 + 6 \[Lambda]) + \[Delta] (3 +
9 \[Lambda]))))/(2 (-1 + \[Beta]) (-4 -
6 \[Delta] + \[Beta] (-2 + 3 \[Delta] (-1 + \[Lambda])) +
2 \[Beta]^2 \[Delta] \[Lambda]) (-4 (1 + \[Delta]) + \[Beta]^2 \
(1 + \[Delta] + \[Delta] \[Lambda])));
pr4 = (c (-1 + \[Beta]) (\[Beta] (1 + 3 \[Delta] + 2 \[Delta]^2) -
2 (3 + 8 \[Delta] + 5 \[Delta]^2) +
2 \[Beta]^2 \[Delta] (1 + 2 \[Delta]) \[Lambda]) -
2 (1 + \[Delta]) (-6 -
8 \[Delta] + \[Beta] (1 + \[Delta]) + \[Beta]^2 (2 + \[Delta] \
(3 + 2 \[Lambda]))))/(
2 (-1 + \[Beta]) (2 +
3 \[Delta]) (-4 (1 + \[Delta]) + \[Beta]^2 (1 + \[Delta] + \
\[Delta] \[Lambda])));
s3 = Show[
Plot[pr2, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dashed},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Plot[pr3, {\[Lambda], 0, 1}, PlotStyle -> {Black, DotDashed},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Plot[pr4, {\[Lambda], 0, 1}, PlotStyle -> {Black, Dotted},
PlotRange -> {{0, 1}, {1.27, 1.38}}],
Frame -> True, FrameStyle -> Directive[14],
FrameLabel -> {"\[Lambda]", "\!\(\*SubscriptBox[\(p\), \(r\)]\)"},
LabelStyle -> Directive[Black, FontFamily -> "Times New Roman"],
FrameTicksStyle -> Black]
将图形1、2、3用Show函数合并:
Show[s1, s2, s3, PlotRange -> {{0, 1}, {1.27, 1.38}}]
明显多了一条线?这是为何?该如何处理??