minecraft村民吧 关注:33贴子:6,757
  • 7回复贴,共1

正切的平方根是可积的

只看楼主收藏回复

等会发过程


IP属地:广东来自Android客户端1楼2017-11-25 01:27回复
    A=∫√tan(x)dx,B=∫√cot(x)dx


    IP属地:广东来自Android客户端2楼2017-11-25 01:28
    回复
      2025-06-01 09:27:41
      广告
      A+B=∫tan(x)^(1/2)+cot(x)^(1/2)dx
      =∫[sin(x)/cos(x)]^(1/2)+[cos(x)/sin(x)]^(1/2)dx
      =∫[sin(x)+cos(x)]/[sin(x)cos(x)]^(1/2)dx


      IP属地:广东4楼2017-11-25 01:32
      回复
        令x=y+π/4
        =∫[sin(y+π/4)+cos(y+π/4)]/[sin(y+π/4)cos(y+π/2)]^(1/2)dx

        sin(y+π/4)=[cos(y)-sin(y)]/2^(1/2)
        cos(y+π/4)=[cos(y)+sin(y)]/2^(1/2)
        所以
        sin(y+π/4)+cos(y+π/4)=2^(1/2)cos(y)
        sin(y+π/4)cos(y+π/4)=[cos(y)^2-sin(y)^2]/2
        即∫[sin(y+π/4)+cos(y+π/4)]/[sin(y+π/4)cos(y+π/4)]^(1/2)dx
        =∫2^(1/2)cos(y)/[[cos(y)^2-sin(y)^2]/2]^(1/2)dx
        =2∫dsin(y)/[1-2sin(y)^2]^(1/2)
        考虑
        ∫dt/√(1-2t^2)
        =1/√2∫d(√2t)/√(1-2t^2)
        =Arcsin(√2t)/√2
        所以
        2∫dsin(y)/[1-2sin(y)^2]^(1/2)
        =√2Arcsin(√2sin(y))


        IP属地:广东6楼2017-11-25 01:46
        回复
          继续计算A-B
          =∫[sin(x)-cos(x)]/[sin(x)cos(x)]^(1/2)dx
          而sin(y+π/4)-cos(y+π/4)=-2^(1/2)sin(y)
          所以∫[sin(x)-cos(x)]/[sin(x)cos(x)]^(1/2)dx
          =-2∫dcos(y)/[2cos(y)^2-1]^(1/2)
          =√2Arccosh(√2cos(y))
          因此
          A=[(A+B)+(A-B)]/2=Arcsin(√2sin(y))/√2-Arccosh(√2cos(y))/√2


          IP属地:广东7楼2017-11-25 01:52
          回复
            ∵x=y+π/4
            ∴x∈[0,π/2],y∈[-π/4,π/4]
            当y=π/4时,
            Arcsin(√2sin(π/4))/√2-Arccosh(√2cos(π/4))/√2
            =Arcsin(1)/√2-Arccosh(1)/√2
            =π/(2√2)
            当y=-π/4时
            Arcsin(√2sin(-π/4))/√2-Arccosh(√2cos(-π/4))/√2
            =Arcsin(-1)/√2-Arccosh(1)/√2
            =-π/(2√2)
            于是∫[0,π/2]√tan(x)dx=π/√2


            IP属地:广东8楼2017-11-25 02:02
            回复
              对于-2∫dcos(y)/[2cos(y)^2-1]^(1/2)
              令cos(y)=sec(z)/√2
              =-√2∫dsec(z)/tan(z)
              =-√2∫sec(z)dz
              =-√2ln|tan(z)+sec(z)|
              =-√2ln|[2cos(y)^2-1]^(1/2)+√2cos(y)|
              这时在[-π/4,π/4]上有定义


              IP属地:广东9楼2017-11-25 16:40
              回复
                ∫tan(x)^(1/3)dx
                使t=tan(x)^(2/3)
                =∫√tdArctan(t√t)
                =3/2∫t/(t^3+1)dt
                =1/2∫-1/(t+1)+(t+1)/(t^2-t+1)dt
                =-ln(t+1)/2+1/4∫1/[(t-1/2)^2+3/4]d(t-1/2)^2+3/4∫1/[(t-1/2)^2+3/4]dt
                =-ln(t+1)/2+ln(t^2-t+1)/4+3Arctan[2(t-1/2)/√3]/(2√3)
                =-ln(tan(x)^(2/3)+1)/2+ln(tan(x)^(4/3)-tan(x)^(2/3)+1)/4+3Arctan[(2tan(x)^(2/3)-1)/√3]/(2√3)
                求在0到π/2的定积分,x∈[0,π/2],t∈[0,+∞]
                求-ln(t+1)/2+ln(t^2-t+1)/4在0和+∞的极限。
                在0的极限,直接代入,得到0
                在+∞的极限,
                lim(x→+∞)-ln(t+1)/2+ln(t^2-t+1)/4
                =lim(x→+∞)-ln(t^2+2t+1)/4+ln(t^2-t+1)/4
                =lim(x→+∞)ln((t^2-t+1)/(t^2+2t+1))/4
                =lim(x→+∞)ln(1)/4
                =0
                所以只需要考虑3Arctan[(2t-1)/√3]/(2√3)在0和+∞的极限。
                在t→+∞时,Arctan[(2t-1)/√3]→π/2
                因此在t→+∞时,原式→3π/(4√3)
                在t→0时,3Arctan[(2t-1)/√3]/(2√3)=3Arctan(-1/√3)/(2√3)=-π/(4√3)
                相减得π/√3


                IP属地:广东11楼2017-12-14 17:09
                回复