∫tan(x)^(1/3)dx
使t=tan(x)^(2/3)
=∫√tdArctan(t√t)
=3/2∫t/(t^3+1)dt
=1/2∫-1/(t+1)+(t+1)/(t^2-t+1)dt
=-ln(t+1)/2+1/4∫1/[(t-1/2)^2+3/4]d(t-1/2)^2+3/4∫1/[(t-1/2)^2+3/4]dt
=-ln(t+1)/2+ln(t^2-t+1)/4+3Arctan[2(t-1/2)/√3]/(2√3)
=-ln(tan(x)^(2/3)+1)/2+ln(tan(x)^(4/3)-tan(x)^(2/3)+1)/4+3Arctan[(2tan(x)^(2/3)-1)/√3]/(2√3)
求在0到π/2的定积分,x∈[0,π/2],t∈[0,+∞]
求-ln(t+1)/2+ln(t^2-t+1)/4在0和+∞的极限。
在0的极限,直接代入,得到0
在+∞的极限,
lim(x→+∞)-ln(t+1)/2+ln(t^2-t+1)/4
=lim(x→+∞)-ln(t^2+2t+1)/4+ln(t^2-t+1)/4
=lim(x→+∞)ln((t^2-t+1)/(t^2+2t+1))/4
=lim(x→+∞)ln(1)/4
=0
所以只需要考虑3Arctan[(2t-1)/√3]/(2√3)在0和+∞的极限。
在t→+∞时,Arctan[(2t-1)/√3]→π/2
因此在t→+∞时,原式→3π/(4√3)
在t→0时,3Arctan[(2t-1)/√3]/(2√3)=3Arctan(-1/√3)/(2√3)=-π/(4√3)
相减得π/√3