1. 解
ln { e^n * [ 1 + ( x/e)^n ] } / n = { n + ln [ 1 + ( x/e)^n ] } / n
= 1 + ln [ 1 + ( x/e)^n ] } / n
1) 0 < x ≤ e 时,
ln [ 1 + ( x/e)^n ] } / n ==> 0 , ( n --> ∞ 时 )
2) x > e 时,
ln [ 1 + ( x/e)^n ] } / n = ln { ( x/e)^n * [ 1 + ( x/e)^(-n )] } / n
= { n * ln( x/e ) + ln [ 1 + ( x/e)^(-n )] } / n = ln( x/e ) + ln [ 1 + ( x/e)^(-n )] / n
==> ln( x/e ) , ( n --> ∞ 时 )
故
f(x) = 1 , ( 0 < x ≤ e 时 )
f(x) = 1 + ln( x/e ) , ( x > e 时 )