一、轮胎损坏的原因
1、使用问题:
不标准负荷(超载)、不标准气压、非标准轮辋及轮辋变形或爆破、车况不良、使用环境(如路况)与轮胎性能不匹配、扎伤、撞击、急转弯、急刹车。
2、性能问题(能力问题):
性能问题也与使用问题有关。受大环境的影响,人为或少数人不能改变的。
如超载能力、速度能力(高、中、低)、散热能力:生热造成胶料改性,同时生成气体,造成轮胎出现问题如:肩空、子口空引起的抽丝爆或断丝。
3、制造问题:
胶部件之间由于气泡、杂质、粘合不好造成界面脱层;部件之间无差级;带束层成型时上偏;胶部件尺寸及性能不合格;欠硫、过硫。胎侧或内衬层接头大;
胎体帘布稀线(一般发生在帘布尾线部分,在压延裁断时)、辟缝(成型定型压力过大或扯拉造成)、交叉。
4、人为制造
病象造假。
二、故障轮胎鉴定的目的
1、查找生产工艺和生产操作过程的问题,以免再次发生。
2、为产品质量的技术改进提供依据。
3、快速准确判断故障源,支援销售,巩固和开发市场。
4、有目的地为客户提供技术支援和技术培训,延长轮胎使用寿命。
三、故障胎鉴定程序
看商标----看胎号----量花纹深度-----看是否修补----看是否有碾伤或致命外伤或其他异常现象----看准故障、确认工艺、使用/性能问题----看规格、层级、花纹-----(确认故障上下模-----做赔偿报废标记-----)登记理赔单-----信息反馈。
注:1、碾伤或致命外伤------在鉴定时要特别慎重,因为有可能隐藏着交通事故;2、是否有异常------防止造假。
四、影响轮胎使用寿命的原因
1、气压
轮胎在使用过程中出现的问题,80%是因为气压的原因造成的。
低气压:胎面活动量大即变形大,产生热量也大,磨耗也会加大,同时轮胎使用性能相应降低。易造成肩空/碾伤胎体/异常磨损,割伤子口。
高气压:科学地加大气压可有效地提高轮胎承载能力,对轮胎使用寿命影不大,而当气压高到一定程度时,降低了轮胎的弹性及缓冲性能,此时轮胎就会成为一个钢性体,带束层钢丝及胎体钢丝承受的应力增大。平衡轴上移,增大了子口部位应力变形,从而造成子口裂。高气压也易引起花纹掉快、爆胎、异型磨损。
2、负荷
轮胎正常使用寿命为100%时
超重30%
轮胎使用寿命是正常的60%
超重50%
轮胎使用寿命是正常的40%
3、速度
以55km/h为标准值时
耐磨指数为100%时
当70km/h时
耐磨耗寿命为75%
当90km/h时
耐磨耗寿命为50%
4、 路面
以光滑的水泥路面为标准,耐磨耗寿命为100%
普通铺装路
耐磨耗寿命为90%
部分沙石路
耐磨耗寿命为70%
沙石路
耐磨耗寿命为60%
非铺装路
耐磨耗寿命为50%
磨耗寿命对照表
路面等级
磨耗(mm/1000km)
甲 级 路
0.12——0.17
乙 级 路
0.19——0.23
丙 级 路
0.28——0.50
5、外界气温
以夏天30度,耐磨耗寿命为100%时。春,秋季,耐磨耗寿命为110;冬季,5度时,耐磨耗寿命为125%,夏季1000KM磨耗是冬季的近3倍 。
季 节
磨耗 (mm/1000km)
夏,平均23度,干燥,甲乙路
0.4
秋,平均14度,有雨,甲乙路
0.23
冬,-24度,有雪,甲级路
0.12
6、轮胎温度
以轮胎温度30度为标准值,耐磨耗寿命为100%时
当轮胎温度为50度时
耐磨耗寿命为80%
当轮胎温度为70度时
耐磨耗寿命为70%
温度是影响轮胎使用寿命的主要原因之一。
轮胎生热的原因是由气压、负荷、速度来决定的。
天然橡胶在高温96度时,强度损失为35%左右,在130—140度开始流动,150—160度以上则变成粘度很大的粘流体,200度开始分解,270度则急剧分解。
当轮胎生热达到橡胶改性的温度时,改性的橡胶会生成气体,造成胶部件脱层。当轮胎温度很高时,要慢慢降温,不要用冷却水急速降温,以免橡胶的自补强性能(橡胶自我修复功能)受到破坏。
轮胎受热造成的肩空应如何鉴定:2#带束层与0度带之间是轮胎的最厚点,也是生热量最大,散热最慢的部位(所以肩垫胶要有散热好的性能)。
当达到一定温度时,此部位的胶部件因改性流动的过程是由里到外发生的,所以造成内里胶部件改性流失,同时生成气体形成肩空鼓包。如果发生爆破,有粘流体,爆破口处的橡胶有老化现象。有时也发生碳化结块的现象,这也是区别人为制造受热肩空的方法之一。
热饱和:等量平衡-----热分散(结构设计)= 热生成(使用原因)。即轮胎生成的热量与散发的热量相等时。
轿车轮胎达到热饱和的时间为0.5-----1h
载重轮胎达到热饱和的时间为2------3h
7、转向
侧滑角度越大,磨耗量越大,温度越高。经常急转弯容易造成子口锯齿形裂口。
8、制动
刹车前瞬间速度越高,磨耗量越大,制动频次多,升温快,磨耗量也大。
9、轮胎维护与保养的必要性
(1)气压
双胎使用时,压差不能超过0.5kg。
当 压 差 为 2kg 时
气 压 高 的 轮 胎
是正常寿命的75%
气 压 低 的 轮 胎
是正常寿命的45%
(2)避免双胎外径差----复轮间隙不能小于13mm。
外 径 差
0.5mm
10mm
15mm
正常磨损为100%
105%
108%
114%
(3)换位
正常换位,校正到最佳状态时,轮胎综合寿命能达到122%
正确换位
单胎平均行驶49700km
固定位置
单胎平均行驶19700km
(4)使用标准轮辋
最大可能使用标准轮辋,杜绝使用修补,变形,锈蚀严重的轮辋。
标准轮辋在行驶过程中,轮辋大边是按椭圆形轨迹变形滚动的,这也是轮辋大边容易出现圈空、圈裂、抽丝爆比例大的原因。
正常轮辋的破损率不小于6%,保质期一般为三至四个月,再加上轮胎维护保养跟不上和超极限使用,轮胎的不正常损坏率就会增大,这也是多数知名大厂将抽丝爆破作为商务理赔的主要原因。所以,一定要说服客户杜绝使用修补、变形、锈蚀严重的不标准轮辋。
(5)轮胎的正确使用
正确的路况、车况、工况要选择正确的产品型号。
五、轮胎结构简介
一、胎冠
胎冠由胎面胶、基部胶、带束层夹胶、带束层垫胶、带束层(1#过渡层、2#基本层、3#保护层、0度带束层)、胎肩垫胶组成。
1、胎面胶:耐磨耗,抗撕裂,低生热 ,抗滑性能好。花纹越深,行驶中花纹块蠕动变形大,耐磨耗性能降低。且内腔容积变小,承载能力相应降低。
花纹深度一般为断面高的5——6%,花纹沟槽面积一般约占胎面总面积的77%。
2、基部胶:厚度一般不超过胎面厚度的20——40%。过薄易发生沟底裂,过厚不易散热,滞后损失大,易脱层。
3、带束层:承受胎体 60——75%的应力。其俩边与胎体层之间贴胎肩垫胶,是胎肩与胎侧的连接弧度较为平坦,减少钢丝帘线承受的弯曲变形,转移和吸收状态下集中于胎肩的应力,降低胎肩生热,避免肩部脱空和胎面磨耗不均。其宽度,与轮胎行驶面宽度相近,帘布端点要避开花纹沟底部,但过宽会引起肩裂。
4、胎肩垫胶
位置:处于带束层两边与胎体之间。
作用:是胎肩与胎侧的连接弧度较为平坦,减少钢丝帘线承受的变形,转移和吸收状态下集中于胎肩的应力。
二、胎圈部位
胎圈由胎体帘线、加强层、上三角胶、下三角胶、胎圈钢丝、内衬层、耐磨胶、尼龙包布组成。
1、三角胶:采用加粗,加高,加硬的复合胶填充。
下三角胶位于钢丝圈上面,胶条硬度为80——85邵尔有的甚至到89邵尔,以抵抗胎圈部位的屈挠变形。
上三角胶位于帘布反包边和钢丝包布之间,硬度较低约为65邵尔左右。以承受轮胎工作时对反包端点的压缩,伸张应力作用产生的屈挠疲劳。具有耐屈挠,低生热性能。
(1)帘布反包高度应稍高于轮辋边缘的高度。但过高也会因屈挠变形引起帘布扯断。
(2)帘布反包与加强层反包端点高度差级一般为10—15mm,加强层反包端点一般定在防水线部位的最厚点。有内胎轮胎子口加强内反包端点比外端点低,无内胎轮胎的反之。
2、耐磨胶
特制胶条,韧性好,成型硫化时变形与流动性小,保证硫化后有一定的胶层厚度,耐磨性好,硬度高,防止轮辋对胎圈的磨蚀。
六、全钢轮胎容易出现的故障
轮胎最薄弱的部位是:部件与部件之间结合的部位。
一、部件脱层的的几种情况
界面脱层,水分、.气泡脱层(肩部气泡易出现在2#带束层端点部位),刷汽油不均挥发不净脱层,生热脱层(性能问题),撞击、挤压、撕裂脱层,杂质脱层,欠硫脱层(易出现在0度带与2#带束层之间),胶部件移位(混炼胶不合格,造成胶部件在存放时尺寸的变化。门尼粘度低在硫化时流动性大造成部件之间相互渗透移位)。
二、子午线轮胎冠部与肩部较易出现的故障
1、冠爆。
2、冠空即冠部脱层:胎冠与带束层之间,带束层之间,带束层与胎体帘布之间。
3、胎面掉块:高气压,胎面的不适应性,使用环境不良等。
4、花纹基部胶裂口:夹带石子,急转弯掰伤,胶料性能,花纹设计不合理。
5、胎冠接头开:急刹车,路况不良,粘合不好。
6、异常磨损
7、肩空
8、肩垫胶结头开
三、造成爆破的原因
1、有形外力----锐形力,能看到外力着力点。
2、无形外力----钝形力,看不到外力着力点。
3、部件之间脱层。
四、子午线轮胎胎圈部位容易出现的问题
1、圈空、圈裂。
(1)轮胎在正常使用的情况下,轮胎转动时,子口部位不承担变形,而胎侧才是缓冲区。当气压太高,承载过大时,屈挠点(轮胎平衡轴线)上移到子口部位,容易出现子口裂。
(2)转弯半径过小,扭力过大,子口部位易出现锯齿形裂口。
(3)轮辋大边宽度不足易引起子口裂。
(4)重载缺气时,易引起子口裂(20——30分钟的时间)。
(5)新轮胎作驱动轮使用时,出现子口裂或肩空的几率大。先作为承重轮使用一段时间后,再换位使用出现的问题相应会少。
(6)胎圈部件之间粘合不牢。
(7)子口反包端点无差级或端点低。
(8)胎圈挂胶不好。
(9)下三角硬度不够。
(10)含气泡或杂质。
(11)胎圈部件散热性能不好。
2、抽丝爆(使用问题与轮辋问题)
(1)锁圈加垫皮:初期出现空,裂。后期就会出现抽丝爆。
(2)轮辋爆破:子口胶条两头都连在胎圈上,且胶条有撕裂痕迹,切口一般有缺口不直。
(3)轮辋变形:抽丝部分对应边子口有时会出现裂口。
(4)胎圈塑性变形:由于受外力变形,当外力撤销后,而不能恢复原型的。
(5)缺气碾伤子口,后期出现抽丝。
(6)撞击,擦伤---外力造成。
(7)轮辋割伤子口:子口胶条只有一头连在胎圈上,且胶条细,切口较直。
抽丝爆造成的原因可归纳为以下几点:
1、结构设计或生产工艺问题。
2、性能问题---能力问题如散热能力,承载能力(子口强度)。
3、轮辋问题
4、使用问题
五、全钢子午线轮胎肩部,子口部出现问题比例大的原因
子午线轮胎滚动阻力与轮胎的使用性能有密切的关系。因为轮胎滚动时,断面上的能量耗散分布(即应力,应变分布)产生滞后损失而生热,轮胎使用性能降低,从而影响轮胎的使用。
内力---物质内部某一部分与另一部分相互作用的力。
应力---以分布在单位面积上的内力来衡量内力在截面积上的聚集程度。
应变---在应力作用下,物质内部发生的形变。
弹性滞后---物体在外力作用下,应变落后应力的现象称为弹性滞后。它把部分动能转变为热能,储存在物体内部,物体会发热。当轮胎内部热量聚集到一定程度时,热生成(使用问题)等于热分散(结构设计)的等量平衡(热饱和)就会被打破,从而使轮胎使用性能降低,影响轮胎的使用。
轮胎在使用过程中,各部位材料能量耗散分布所占比例为:
胎面39%.带束层8%,胎体帘布6%,基部胶5%。
胎冠及胎肩部位材料能量耗散合计为58%。
胎圈14%,三角胶13%,胎体帘布6%。
子口部位材料能量耗散合计为33%。
内衬层8%,胎侧胶7%,胎体帘布6%。
胎侧部位材料能量耗散合计21%。
从以上比例分配可以看
1、使用问题:
不标准负荷(超载)、不标准气压、非标准轮辋及轮辋变形或爆破、车况不良、使用环境(如路况)与轮胎性能不匹配、扎伤、撞击、急转弯、急刹车。
2、性能问题(能力问题):
性能问题也与使用问题有关。受大环境的影响,人为或少数人不能改变的。
如超载能力、速度能力(高、中、低)、散热能力:生热造成胶料改性,同时生成气体,造成轮胎出现问题如:肩空、子口空引起的抽丝爆或断丝。
3、制造问题:
胶部件之间由于气泡、杂质、粘合不好造成界面脱层;部件之间无差级;带束层成型时上偏;胶部件尺寸及性能不合格;欠硫、过硫。胎侧或内衬层接头大;
胎体帘布稀线(一般发生在帘布尾线部分,在压延裁断时)、辟缝(成型定型压力过大或扯拉造成)、交叉。
4、人为制造
病象造假。
二、故障轮胎鉴定的目的
1、查找生产工艺和生产操作过程的问题,以免再次发生。
2、为产品质量的技术改进提供依据。
3、快速准确判断故障源,支援销售,巩固和开发市场。
4、有目的地为客户提供技术支援和技术培训,延长轮胎使用寿命。
三、故障胎鉴定程序
看商标----看胎号----量花纹深度-----看是否修补----看是否有碾伤或致命外伤或其他异常现象----看准故障、确认工艺、使用/性能问题----看规格、层级、花纹-----(确认故障上下模-----做赔偿报废标记-----)登记理赔单-----信息反馈。
注:1、碾伤或致命外伤------在鉴定时要特别慎重,因为有可能隐藏着交通事故;2、是否有异常------防止造假。
四、影响轮胎使用寿命的原因
1、气压
轮胎在使用过程中出现的问题,80%是因为气压的原因造成的。
低气压:胎面活动量大即变形大,产生热量也大,磨耗也会加大,同时轮胎使用性能相应降低。易造成肩空/碾伤胎体/异常磨损,割伤子口。
高气压:科学地加大气压可有效地提高轮胎承载能力,对轮胎使用寿命影不大,而当气压高到一定程度时,降低了轮胎的弹性及缓冲性能,此时轮胎就会成为一个钢性体,带束层钢丝及胎体钢丝承受的应力增大。平衡轴上移,增大了子口部位应力变形,从而造成子口裂。高气压也易引起花纹掉快、爆胎、异型磨损。
2、负荷
轮胎正常使用寿命为100%时
超重30%
轮胎使用寿命是正常的60%
超重50%
轮胎使用寿命是正常的40%
3、速度
以55km/h为标准值时
耐磨指数为100%时
当70km/h时
耐磨耗寿命为75%
当90km/h时
耐磨耗寿命为50%
4、 路面
以光滑的水泥路面为标准,耐磨耗寿命为100%
普通铺装路
耐磨耗寿命为90%
部分沙石路
耐磨耗寿命为70%
沙石路
耐磨耗寿命为60%
非铺装路
耐磨耗寿命为50%
磨耗寿命对照表
路面等级
磨耗(mm/1000km)
甲 级 路
0.12——0.17
乙 级 路
0.19——0.23
丙 级 路
0.28——0.50
5、外界气温
以夏天30度,耐磨耗寿命为100%时。春,秋季,耐磨耗寿命为110;冬季,5度时,耐磨耗寿命为125%,夏季1000KM磨耗是冬季的近3倍 。
季 节
磨耗 (mm/1000km)
夏,平均23度,干燥,甲乙路
0.4
秋,平均14度,有雨,甲乙路
0.23
冬,-24度,有雪,甲级路
0.12
6、轮胎温度
以轮胎温度30度为标准值,耐磨耗寿命为100%时
当轮胎温度为50度时
耐磨耗寿命为80%
当轮胎温度为70度时
耐磨耗寿命为70%
温度是影响轮胎使用寿命的主要原因之一。
轮胎生热的原因是由气压、负荷、速度来决定的。
天然橡胶在高温96度时,强度损失为35%左右,在130—140度开始流动,150—160度以上则变成粘度很大的粘流体,200度开始分解,270度则急剧分解。
当轮胎生热达到橡胶改性的温度时,改性的橡胶会生成气体,造成胶部件脱层。当轮胎温度很高时,要慢慢降温,不要用冷却水急速降温,以免橡胶的自补强性能(橡胶自我修复功能)受到破坏。
轮胎受热造成的肩空应如何鉴定:2#带束层与0度带之间是轮胎的最厚点,也是生热量最大,散热最慢的部位(所以肩垫胶要有散热好的性能)。
当达到一定温度时,此部位的胶部件因改性流动的过程是由里到外发生的,所以造成内里胶部件改性流失,同时生成气体形成肩空鼓包。如果发生爆破,有粘流体,爆破口处的橡胶有老化现象。有时也发生碳化结块的现象,这也是区别人为制造受热肩空的方法之一。
热饱和:等量平衡-----热分散(结构设计)= 热生成(使用原因)。即轮胎生成的热量与散发的热量相等时。
轿车轮胎达到热饱和的时间为0.5-----1h
载重轮胎达到热饱和的时间为2------3h
7、转向
侧滑角度越大,磨耗量越大,温度越高。经常急转弯容易造成子口锯齿形裂口。
8、制动
刹车前瞬间速度越高,磨耗量越大,制动频次多,升温快,磨耗量也大。
9、轮胎维护与保养的必要性
(1)气压
双胎使用时,压差不能超过0.5kg。
当 压 差 为 2kg 时
气 压 高 的 轮 胎
是正常寿命的75%
气 压 低 的 轮 胎
是正常寿命的45%
(2)避免双胎外径差----复轮间隙不能小于13mm。
外 径 差
0.5mm
10mm
15mm
正常磨损为100%
105%
108%
114%
(3)换位
正常换位,校正到最佳状态时,轮胎综合寿命能达到122%
正确换位
单胎平均行驶49700km
固定位置
单胎平均行驶19700km
(4)使用标准轮辋
最大可能使用标准轮辋,杜绝使用修补,变形,锈蚀严重的轮辋。
标准轮辋在行驶过程中,轮辋大边是按椭圆形轨迹变形滚动的,这也是轮辋大边容易出现圈空、圈裂、抽丝爆比例大的原因。
正常轮辋的破损率不小于6%,保质期一般为三至四个月,再加上轮胎维护保养跟不上和超极限使用,轮胎的不正常损坏率就会增大,这也是多数知名大厂将抽丝爆破作为商务理赔的主要原因。所以,一定要说服客户杜绝使用修补、变形、锈蚀严重的不标准轮辋。
(5)轮胎的正确使用
正确的路况、车况、工况要选择正确的产品型号。
五、轮胎结构简介
一、胎冠
胎冠由胎面胶、基部胶、带束层夹胶、带束层垫胶、带束层(1#过渡层、2#基本层、3#保护层、0度带束层)、胎肩垫胶组成。
1、胎面胶:耐磨耗,抗撕裂,低生热 ,抗滑性能好。花纹越深,行驶中花纹块蠕动变形大,耐磨耗性能降低。且内腔容积变小,承载能力相应降低。
花纹深度一般为断面高的5——6%,花纹沟槽面积一般约占胎面总面积的77%。
2、基部胶:厚度一般不超过胎面厚度的20——40%。过薄易发生沟底裂,过厚不易散热,滞后损失大,易脱层。
3、带束层:承受胎体 60——75%的应力。其俩边与胎体层之间贴胎肩垫胶,是胎肩与胎侧的连接弧度较为平坦,减少钢丝帘线承受的弯曲变形,转移和吸收状态下集中于胎肩的应力,降低胎肩生热,避免肩部脱空和胎面磨耗不均。其宽度,与轮胎行驶面宽度相近,帘布端点要避开花纹沟底部,但过宽会引起肩裂。
4、胎肩垫胶
位置:处于带束层两边与胎体之间。
作用:是胎肩与胎侧的连接弧度较为平坦,减少钢丝帘线承受的变形,转移和吸收状态下集中于胎肩的应力。
二、胎圈部位
胎圈由胎体帘线、加强层、上三角胶、下三角胶、胎圈钢丝、内衬层、耐磨胶、尼龙包布组成。
1、三角胶:采用加粗,加高,加硬的复合胶填充。
下三角胶位于钢丝圈上面,胶条硬度为80——85邵尔有的甚至到89邵尔,以抵抗胎圈部位的屈挠变形。
上三角胶位于帘布反包边和钢丝包布之间,硬度较低约为65邵尔左右。以承受轮胎工作时对反包端点的压缩,伸张应力作用产生的屈挠疲劳。具有耐屈挠,低生热性能。
(1)帘布反包高度应稍高于轮辋边缘的高度。但过高也会因屈挠变形引起帘布扯断。
(2)帘布反包与加强层反包端点高度差级一般为10—15mm,加强层反包端点一般定在防水线部位的最厚点。有内胎轮胎子口加强内反包端点比外端点低,无内胎轮胎的反之。
2、耐磨胶
特制胶条,韧性好,成型硫化时变形与流动性小,保证硫化后有一定的胶层厚度,耐磨性好,硬度高,防止轮辋对胎圈的磨蚀。
六、全钢轮胎容易出现的故障
轮胎最薄弱的部位是:部件与部件之间结合的部位。
一、部件脱层的的几种情况
界面脱层,水分、.气泡脱层(肩部气泡易出现在2#带束层端点部位),刷汽油不均挥发不净脱层,生热脱层(性能问题),撞击、挤压、撕裂脱层,杂质脱层,欠硫脱层(易出现在0度带与2#带束层之间),胶部件移位(混炼胶不合格,造成胶部件在存放时尺寸的变化。门尼粘度低在硫化时流动性大造成部件之间相互渗透移位)。
二、子午线轮胎冠部与肩部较易出现的故障
1、冠爆。
2、冠空即冠部脱层:胎冠与带束层之间,带束层之间,带束层与胎体帘布之间。
3、胎面掉块:高气压,胎面的不适应性,使用环境不良等。
4、花纹基部胶裂口:夹带石子,急转弯掰伤,胶料性能,花纹设计不合理。
5、胎冠接头开:急刹车,路况不良,粘合不好。
6、异常磨损
7、肩空
8、肩垫胶结头开
三、造成爆破的原因
1、有形外力----锐形力,能看到外力着力点。
2、无形外力----钝形力,看不到外力着力点。
3、部件之间脱层。
四、子午线轮胎胎圈部位容易出现的问题
1、圈空、圈裂。
(1)轮胎在正常使用的情况下,轮胎转动时,子口部位不承担变形,而胎侧才是缓冲区。当气压太高,承载过大时,屈挠点(轮胎平衡轴线)上移到子口部位,容易出现子口裂。
(2)转弯半径过小,扭力过大,子口部位易出现锯齿形裂口。
(3)轮辋大边宽度不足易引起子口裂。
(4)重载缺气时,易引起子口裂(20——30分钟的时间)。
(5)新轮胎作驱动轮使用时,出现子口裂或肩空的几率大。先作为承重轮使用一段时间后,再换位使用出现的问题相应会少。
(6)胎圈部件之间粘合不牢。
(7)子口反包端点无差级或端点低。
(8)胎圈挂胶不好。
(9)下三角硬度不够。
(10)含气泡或杂质。
(11)胎圈部件散热性能不好。
2、抽丝爆(使用问题与轮辋问题)
(1)锁圈加垫皮:初期出现空,裂。后期就会出现抽丝爆。
(2)轮辋爆破:子口胶条两头都连在胎圈上,且胶条有撕裂痕迹,切口一般有缺口不直。
(3)轮辋变形:抽丝部分对应边子口有时会出现裂口。
(4)胎圈塑性变形:由于受外力变形,当外力撤销后,而不能恢复原型的。
(5)缺气碾伤子口,后期出现抽丝。
(6)撞击,擦伤---外力造成。
(7)轮辋割伤子口:子口胶条只有一头连在胎圈上,且胶条细,切口较直。
抽丝爆造成的原因可归纳为以下几点:
1、结构设计或生产工艺问题。
2、性能问题---能力问题如散热能力,承载能力(子口强度)。
3、轮辋问题
4、使用问题
五、全钢子午线轮胎肩部,子口部出现问题比例大的原因
子午线轮胎滚动阻力与轮胎的使用性能有密切的关系。因为轮胎滚动时,断面上的能量耗散分布(即应力,应变分布)产生滞后损失而生热,轮胎使用性能降低,从而影响轮胎的使用。
内力---物质内部某一部分与另一部分相互作用的力。
应力---以分布在单位面积上的内力来衡量内力在截面积上的聚集程度。
应变---在应力作用下,物质内部发生的形变。
弹性滞后---物体在外力作用下,应变落后应力的现象称为弹性滞后。它把部分动能转变为热能,储存在物体内部,物体会发热。当轮胎内部热量聚集到一定程度时,热生成(使用问题)等于热分散(结构设计)的等量平衡(热饱和)就会被打破,从而使轮胎使用性能降低,影响轮胎的使用。
轮胎在使用过程中,各部位材料能量耗散分布所占比例为:
胎面39%.带束层8%,胎体帘布6%,基部胶5%。
胎冠及胎肩部位材料能量耗散合计为58%。
胎圈14%,三角胶13%,胎体帘布6%。
子口部位材料能量耗散合计为33%。
内衬层8%,胎侧胶7%,胎体帘布6%。
胎侧部位材料能量耗散合计21%。
从以上比例分配可以看