模型准备了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。模型假设根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。模型建立在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。模型求解利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。模型分析对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。模型检验将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用与推广应用方式因问题的性质和建模的目的而异,而模型的推广就是在现有模型的基础上对模型有一个更加全面,考虑更符合现实情况的模型。