a[1] = 1
a[2] = 2^1 * 1 + 4
= 2^1 + 4
a[3] = 2^2 * (2^1 + 4) + 4
= 2^2 * 2^1 + 2^2 * 4 + 4
= 2^(2+1) + (2^2 + 1) * 4
a[4] = 2^3 * [2^(2+1) + (2^2 + 1) * 4] + 4
= 2^3 * 2^(2+1) + 2^3 * (2^2 + 1) * 4 + 4
= 2^(3+2+1) + [2^(3+2) + 2^3 + 1] * 4
a[5] = 2^4 * {2^(3+2+1) + [2^(3+2) + 2^3 + 1] * 4} + 4
= 2^4 * 2^(3+2+1) + 2^4 * [2^(3+2) + 2^3 + 1] * 4 + 4
= 2^(4+3+2+1) + [2^(4+3+2) + 2^(4+3) + 2^4 + 1] * 4
从上述几项可以猜测,{a[n]}的通项公式应该为
a{n} = 2^[n(n-1)/2] + 4*{1 + 2^(n-1) + 2^(2n-3) + ... + 2^[(n+1)(n-2)/2]}
当然可以用数学归纳法尝试证明,但是我觉得不能再化简了。