(1)
a1=1;
a2=1/3
a3=1/5
a4=1/7
猜想an =1/(2n-1)(n=1,2,3,4,...)
用数学归纳法证明
假定n=k时成立,即:ak=1/(2k-1)
那么当n=k+1时:
a(k+1)=ak(2ak+1)=(1/(2k-1))/(2*(1/(2k-1)+1))=1/(2(k+1)-1)
猜想得证。
(2)
因为:2/Bn = 1/An + 1
所以:2/Bn = (An+1)/An
Bn= 2An/(An+1) = 1/n
所以:Tn=(B1*B2) + (B2 * B3) + ... +(Bn * Bn+1)
=(1*1/2) + (1/2 * 1/3) + ... + (1/n * 1/(n+1))
= 1 - 1/2 +1/2 -1/3 + ... + 1/n -1/(n+1)
= 1-1/(n+1)
= n/(n+1)