设∠PAC=x,其它角度标注如图:
在三角形△ABP、△ABC、△ACP分别用正弦定理:
sin(80°-x)/ sin(60°+x)= PB/AB
sin50°/ sin80°= AB/BC
sin140°/ sin30°= BC/PB
三式相乘得到
Sin(80°-x)/ sin(60°+x)= (sin30°*sin80°)/( sin50°* sin140°)
=(sin30°*sin80°)/( cos40°* sin40°)= (sin30°*sin80°)/(1/2sin80°)=1
则sin(80°-x) = sin(60°+x)
则80°-x=60°+x 或(80°-x)+(60°+x)=180°(舍去)
则x= 10°
