几何证明有两种基本类型:
一是平面图形的数量关系;
二是有关平面图形的位置关系.这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题.掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,最后达到证明目的.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形.在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的.当然掌握了分析方法之后,还要掌握三角形的相关知识,如相似的判定定理,性质定理,特殊三角形的线段和角的关系等等,只有将方法和知识完美结合,才能顺利解答题目。
更多精彩敬请关注提分宝典吧
一是平面图形的数量关系;
二是有关平面图形的位置关系.这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题.掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,最后达到证明目的.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形.在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的.当然掌握了分析方法之后,还要掌握三角形的相关知识,如相似的判定定理,性质定理,特殊三角形的线段和角的关系等等,只有将方法和知识完美结合,才能顺利解答题目。
更多精彩敬请关注提分宝典吧