已知点P ( t , y )在函数f (x ) =
(1) 求证:| ac | 4;
(2) 求证:在(–1,+∞)上f ( x )单调递增.
(3) (仅理科做)求证:f ( |a | ) + f ( | c | ) > 1.
证:(1) ∵ tR, t –1,
∴ ⊿ = (–ca) – 16c =ca – 16c 0 ,
∵ c 0,∴ca 16 ,∴| ac | 4.
(2)由 f ( x ) = 1 – 1
x122222422xx1(x –1)的图象上,且有t2 – c2at + 4c2 = 0 ( c 0 ). ,
1
x211x11x1x2(x21)(x11)法1. 设–1 < x1 <x2, 则f (x2) – f ( x1) = 1––1 + = .
∵ –1 < x1 < x2, ∴ x1– x2 < 0,x1 + 1 > 0,x2 +1 > 0 ,
∴f (x2) – f ( x1) < 0 ,即f (x2) < f ( x1) ,∴x 0时,f ( x )单调递增.
法2. 由f ` ( x ) = 1
(x1)2> 0 得x –1,
∴x > –1时,f ( x )单调递增.
(3)(仅理科做)∵f ( x)在x > –1时单调递增,| c |
44|a| > 0 ,
∴f (| c | ) f (4|a|) = |a|
4
|a|
|a|= 4|a|44 1f ( | a | )+ f ( | c | ) = |a|1+ |a|4>|a|
|a|4+4
|a|4=1.
即f ( | a | ) + f ( | c | ) > 1.