是关于一个蛇和梯子的小游戏,规则大致是扔骰子,碰到梯子跳几格碰到蛇后退几格,到100就结束,游戏不是关键,下面是游戏的主体(有漏洞请指教),题目是让这个程序算出一下数据:
1—n最有可能是多少(n为投骰子的次数)。
2—n的平均数是多少
3—在这个游戏中,哪一格位置的停留概率最高,概率为多少。
4—哪一格位置的停留概率最低,概率为多少。
5—想要完成这个游戏最少投掷几次骰子
6—有多少种可能的路线
没错,小白直接看懵了,勿喷。。。谢谢大家了。只能大致的做出游戏的运行框架,但不能求出上面的问题,还请指教。
#include <stdio.h>
#include<stdlib.h>
#include<time.h>
int dice;
int checkPosition();
int Position, newPosition, above;
int choice;
int n;
main()
{
{
do
{
srand(time(NULL));
dice = toupper(getch() );
dice=((rand()%6)+1);
printf("\ntimes = %d.\n", n);
Position+=dice;
if(Position >100)
{Position-= dice;}
} while(Position<100);
}
getch();
return 0;
}
checkPosition()
{
switch(Position)
{
case 1:
return newPosition = 38;
break;
case 4:
return newPosition = 14;
break;
case 9:
return newPosition = 31;
break;
case 16:
return newPosition = 6;
break;
case 21:
return newPosition =42;
break;
case 28:
return newPosition =84;
break;
case 36:
return newPosition =44;
break;
case 47:
return newPosition =26;
break;
case 49:
return newPosition =11;
break;
case 51:
return newPosition =67;
break;
case 56:
return newPosition =53;
break;
case 62:
return newPosition =19;
break;
case 64:
return newPosition =60;
break;
case 71:
return newPosition = 91;
case 80:
return newPosition = 100;
case 87:
return newPosition =24;
case 93:
return newPosition =73;
case 95:
return newPosition =75;
case 98:
return newPosition =78;
default:
return newPosition = Position;
}
}
1—n最有可能是多少(n为投骰子的次数)。
2—n的平均数是多少
3—在这个游戏中,哪一格位置的停留概率最高,概率为多少。
4—哪一格位置的停留概率最低,概率为多少。
5—想要完成这个游戏最少投掷几次骰子
6—有多少种可能的路线
没错,小白直接看懵了,勿喷。。。谢谢大家了。只能大致的做出游戏的运行框架,但不能求出上面的问题,还请指教。
#include <stdio.h>
#include<stdlib.h>
#include<time.h>
int dice;
int checkPosition();
int Position, newPosition, above;
int choice;
int n;
main()
{
{
do
{
srand(time(NULL));
dice = toupper(getch() );
dice=((rand()%6)+1);
printf("\ntimes = %d.\n", n);
Position+=dice;
if(Position >100)
{Position-= dice;}
} while(Position<100);
}
getch();
return 0;
}
checkPosition()
{
switch(Position)
{
case 1:
return newPosition = 38;
break;
case 4:
return newPosition = 14;
break;
case 9:
return newPosition = 31;
break;
case 16:
return newPosition = 6;
break;
case 21:
return newPosition =42;
break;
case 28:
return newPosition =84;
break;
case 36:
return newPosition =44;
break;
case 47:
return newPosition =26;
break;
case 49:
return newPosition =11;
break;
case 51:
return newPosition =67;
break;
case 56:
return newPosition =53;
break;
case 62:
return newPosition =19;
break;
case 64:
return newPosition =60;
break;
case 71:
return newPosition = 91;
case 80:
return newPosition = 100;
case 87:
return newPosition =24;
case 93:
return newPosition =73;
case 95:
return newPosition =75;
case 98:
return newPosition =78;
default:
return newPosition = Position;
}
}