T=C(0,3n)+C(3,3n)+...+C(3n,3n)=1/3[2^(3n)+2·(-1)^n]
证明:记三次单位根ω=1/2(√3i-1)
则ω^3=1,ω^2+ω+1=0
3T
=(1+1+1)C(0,3n)+(1+ω+ω^2)C(1,3n)+(1+ω^2+ω^4)C(2,3n)+(1+ω^3+ω^6)C(3,3n)+...+(1+ω^(3n)+ω^(6n))C(3n,3n)
=(1+1)^(3n)+(1+ω)^(3n)+(1+ω^2)^(3n)=2^(3n)+[(1+√3i)/2]^(3n)+[(1-√3i)/2]^(3n)
=2^(3n)+[e^(iπ/3)]^(3n)+[e^(5iπ/3)]^(3n)
=2^(3n)+2·e(iπn)
=2^(3n)+2·(-1)^n
故T=1/3[2^(3n)+2·(-1)^n]
证明:记三次单位根ω=1/2(√3i-1)
则ω^3=1,ω^2+ω+1=0
3T
=(1+1+1)C(0,3n)+(1+ω+ω^2)C(1,3n)+(1+ω^2+ω^4)C(2,3n)+(1+ω^3+ω^6)C(3,3n)+...+(1+ω^(3n)+ω^(6n))C(3n,3n)
=(1+1)^(3n)+(1+ω)^(3n)+(1+ω^2)^(3n)=2^(3n)+[(1+√3i)/2]^(3n)+[(1-√3i)/2]^(3n)
=2^(3n)+[e^(iπ/3)]^(3n)+[e^(5iπ/3)]^(3n)
=2^(3n)+2·e(iπn)
=2^(3n)+2·(-1)^n
故T=1/3[2^(3n)+2·(-1)^n]