科幻吧 关注:355,222贴子:1,046,220
  • 14回复贴,共1

【搬运】太空航行与作战技术导论 作者: SANJYSAN 【航行篇】

只看楼主收藏回复

SANJYSAN的作品「太空航行导论」与「太空战斗导论」,是一篇对于近未来的行星间太空作战的研究文章。其中讨论太空作战中所可能使用的各种武器、攻击方式,战略与战术,并以大量实例与计算模型来说明之。
本人负责搬运,诸位阅读时可以利用现有知识自行验证。


IP属地:江苏1楼2013-09-12 15:18回复

    第一节 太空航行器推进技术
     任何离开地表进入太空,以及在太空航行的人造飞行体,其最根本的就是它的推进系统。没有它统其它的一切都不用提了,因此推进系统就是太空船的心脏。不同的太空船推进系统将会直接影响太空航行的型态。而所有推进系统的原理都是植基于物理学上动量守恒定律,简单来说就是出于以下几个原因:
      一、所有推进系统都是使用根据牛顿第三运动定律的反作用力效果来使航行器前进。在地球上,主要是以外界的物质来作为获得反作用力的对象。比如陆地上用脚,或用轮子的摩擦力来产生反作用力,水面船舰用种种方法拨动海水以来获得反作用力使船舰前进,飞机则是以螺旋桨或喷射引擎等拨动空气来获得反作用力。就太空船而言则是由喷射气体或是由外界提供动能来获得反作用力而能前进。
      二、在太空环境中的阻力为零。根据牛顿第一运动定律,任何速度不为零的物体必基于惯性而等速前进。因此在理论上任何太空航行器的航程均为无限大,这点由历年来发射的外太阳系行星探测船可以得知。航海家号以及先锋号都已经离开太阳系了,这些无人探测船都会以数十亿年的时间来向距离挑战。而载人的太空航行器受限于携带的空气,水与食物数量以及人类的寿命长度而导致巡航时间受到限制,因而会出现存在某个行动半径限制的续航力有限的情形。而在这种情况下,能在相同的时间内增大行动半径的唯一选择就只有增加巡航速度这个方法。
      三、同样是由于太空中没有阻力这个原因,当我们想要减慢或停止太空船的运动的时候,必须要消耗携带的燃料来抵销原本的前进速度。这是导致太空航行器与地球圈内的航行器的运动形式差异的最重要的原因。地球上的航行器由于具有大气与水的阻力因素,因而只要把推进系统关闭,航行器速度自然会降为零。因此在大气圈内,燃料的消耗主要是用来对抗阻力以维持速度,同时其阻力亦限制了可以达到的速度上限。但在太空中没有阻力,或者严格来说,阻力趋近于零。因此关闭推进系统不会减低航行器速度,想要停止唯有消耗燃料作反向喷射,这造成了较大气圈内行行更大的燃料消耗量。另外必须注意的是这种情形也适用于太空船的姿态修正与小规模的轨道修正时的小规模运动中。
      虽然原理相同,但是应用的方法则有一些差别。想以反作用力前进基本上有三个方法,推进系统也因此三种方法的差别因而可以分成三种形式。第一种推进形式是将自己的一部份质量往后抛掷,如此自然可以使剩下来的部分获得反作用力而前进。这种形式一般被称为火箭式推进系统,最有名的例子就是登月用的巨大火箭农神五号。
      第二种推进形式则是拨动加速外界的流质藉此获得反作用力,简单的例子就是各式飞机与船舰,这些都是拨动空气与海水等流质前进。基本上这类推进系统有很多次形式,但能在其够使用于太空中的只有一种,就是冲压推进系统。
      第三种推进形式则是纯粹以外界动力来推动,本身既不携带可以抛掷的质量,也不特别去拨动外界流质。而这种方法是最早被人类应用的系统,简单的例子就是帆船。
      一般而言,评论各种推进系统优劣的主要标准是其能量利用效率,推进系统形式的不同将会对能量运用效率产生重大影响。另外即使是相同形式的推进系统,也会由于其所运用技术细节的不同而使能量利用效率出现巨大的差异,比如说使用核能或是化学能两者能量运用效率就有相当大的差别。最后的一种评估方法,则是各种进系统使用的燃料的能量价格。即使是能量利用效率较差,但如果价格较低甚至是免费的时候,无疑的会使其在经济上具有大的竞争能力。以下将简单的就三种基本形式的推进系统,及其使用技术不同而衍生的各式子系统的性能作一简单的介绍与评估。


    IP属地:江苏2楼2013-09-12 15:19
    回复

      第三节 第一种推进形式之各式火箭推进系统
       1.化学火箭推进系统
        这是目前普遍使用的推进系统,算是十分原始的推进系统。其以化学物质间的化学反应来提供主要动力。以目前的技术,化学火箭的比冲在 200秒到480秒之间,喷气速度Vc大约在3~5km/s左右。化学推进系统除了化学能的能量转换效率之外,还有工程学上的热度与燃烧室压力限制等问题存在。即使未来的化学推进剂的改良达到巅峰,其Vc也不太可能超过10km/s的水平,因此其前景有限。若装备Vc约为 5km/s之化学火箭推进系统,则标准太空船所获得的ΔV为477m/s。
        化学火箭的优点是和其它火箭相比,引擎重量非常轻(较重的部份是燃料的重量),并有极高的推力,可推送大量载荷抗重力上升。缺点就是这个 477m/s的ΔV与其它形式的火箭比起来实在太小了。化学火箭理想喷气值约为 5000m/s左右,目前的化学火箭工艺技术至少在喷气速度方面已经达到极限,进一步的发展主要是在系统减重,减少价格与寻找更有效率的新燃料方面。不过如前所述,所能增加的效果也是极为有限的。
        2.核分裂式推进系统之一,核分裂热推进引擎
        这是以核分裂作动力源的推进系统。其燃料主要是铀235或是钸239。就能量利用方式的不同可以分几个支系。以火箭系统的支系而言,是以核分裂燃料产生热,加热燃烧室中的工作流质(即推进剂)使其喷出。通常采用分子量最低的氢作为获得反作用力的工作流质以求得最高的喷气速度。美国在六零年代曾经进行过一项称之为「核子引擎火箭推进系统应用」的研究计画,(Nuclear Engine for Rocket Vehicle Applications,NERVA)测试过这类核子火箭的可能性。
        NERVA没有实际升空测试,而是把引擎放在地上,喷气口朝天喷射的大规模引擎测试计画。这个计画中建造了十数部引擎,密集测试了数十次。其中测试机组中的最高出力约为1130MW,比冲约为 850秒,推力从一万磅到二十五万磅的都有。最高记录曾以全功率连续运转28分钟。而且这些只是以60年代的技术作出来的测试用引擎,便有90年代最先进化学火箭两倍以上的比冲量。以这个测试用引擎的能力,约可使标准太空船达到 794m/sec的ΔV。而此种引擎的理论理论比冲值约在750秒到1200秒之间。
        NERVA 研究计画后来在80年代美国政府删减火星登陆计画预算时中止,所有设备皆被弃置,但宝贵的测试资料与经验都留下来了。如果需要的话,这种引擎是能在最短时间发展出来的优秀次代火箭引擎。和尚未成功的受控核融合火箭相比,这种核分裂火箭用的是已经成熟,相当实际的技术,只要投下经费,十年内便可建造出可靠的引擎装到太空船上。
        另外一方面,即使NERVA
      计画结束,大量理论方面的基础研究并未跟著停止。就核分裂热推进系统而言,理论上具有另一种较为优秀的引擎存在,即气态核心反应炉。这是相对于NERVA 计画中使用的固态(石墨)核心反应炉而言,以铀电浆与氢混和的气态炉心反应炉。其比冲潜力在5000秒~10000秒之间。这类引擎的困难与受控核融合炉有点类似,皆为炉心高温气体的处理相当麻烦。不过由于其并非欲进行核融合,气体温度仅约摄氏数万度,远较融合炉的数千万到上亿度为低,因而难度低了许多。若取理论平均值7000秒比冲来计算,则使用这类系统的标准太空船之ΔV可达到6538m/sec。但这类系统,包含固态炉心的 NERVA计画都有个相似的缺点,即其排气具有放射性,因此不能在地球上使用。在太空中则无妨,因放射性气体会很快扩散开来。核分裂系统的理想喷气值约为11200km/s。
        3.核分裂式推进系统之二,核分裂电推进引擎
        这种系统简单的来说,就是用核电厂发电,以电力来加速发射带电粒子来获得推力。当然这个核电厂的体积和重量必须缩小到能够装进太空船中才行。而小型核电厂已经算是相当成熟的技术了,例如目前最小的核子潜舰排水量才两千吨左右,因此基本上此类系统问题并不大。而发射的带电粒子则可从电子到各式离子与电浆等范围,视需求而有不同。基本上为求得较高的推力与较快的加速度,工作流质以质量较重的金属离子或电浆为主。若是要求效率的话则就以发射较轻的粒子如氢离子来得到较高的喷射速度。
        要注意的问题是需保持太空船的电中性,若是一直制造并发射正离子的话,太空船就会累积负电荷,因此得在离子喷射口中一并喷射电子。若是用电浆推进系统的话则无此问题,电浆本身就是电中性的气体。这类电推进系统的比冲非常大,通常约在1000秒~10000秒之间,这是以光电池等一般动力输出得到的比冲值。但其潜力不止于此,若是能以核分裂动力提供源源不绝的能源来加速很轻带电粒子,则具有把比冲提高到100000秒的潜力。以具有100000秒比冲的引擎来计算,标准太空船约可达到 93404m/sec的ΔV。
        这类系统的缺点是推力非常低,其为了效率必须使粒子加到极高的速度喷射,但粒子的质量非常小,单位时间内能喷射的粒子质量有限因此获得的推力很低。故采用此种系统的太空船加速度会非常低,一般大约在 10的负5次方个 G左右。因此必须持续数周到数月的加速才能达到设计上的最高速度,同时也不可能推动太空船从星球表面起飞。


      IP属地:江苏4楼2013-09-12 15:24
      回复

        第四节 第二种推进形式:星际冲压喷射推进系统
         星际冲压喷射推进系统的想法与具体计算结果乃是在六零年代由洛斯·阿拉摩斯研究所的R·W·巴萨德所提出。这种形式的推进系统原理十分简单,也就是喷射机引擎的运作原理。从行进方向吸入气体,加速后往后喷出以获得反作用力。
          太空中虽然号称是真空,但仍然是有气体分子存在的。当然密度非常小,平均大约是每立方公分的空间中有一个粒子,但有些具有丰富星际气体的地带的粒子数量可能在通常的百倍到千倍左右。如此稀薄的气体使得冲压喷射推进系统的进气口要够大才能吸入足量的气体,基本上在星际气体通常含量的空间,进气口需要有直径数千公里的面积才行。但实际上真正的进气口会只有几百公里左右,再由进气口用线圈造出直径几千公里大小的电磁场漏斗来电离并吸引星际气体。
          这个方法的缺点是磁场的强度会非常高,会有数万到上百万特斯拉,而这种强度的磁场产生的拉力将会让线圈崩毁,因此必须用低重量高强度的材质固定线圈,构想中的方法是用钻石来束缚,但这个钻石本体也会有数千吨重。
          除了电磁漏斗吸引的方法外,也有另一种方法,即用电磁透镜聚焦星际气体离子。这种方法所需的磁场非常小,约数百到数千特斯拉,但电磁透镜必须放在进气口本体前几千万公里到几亿公里的地方,因而会造成一些困扰。想缩短距离则就必须加大电场,但这一来就会面临原先规避的磁场强度过高的问题。另外这种方法会有色差的问题,即聚焦不够精密造成的散射损失。这种系统的优点是不需要携带燃料,其所使用的燃料质量为星际气体密度乘以太空船进气口扫掠过后的体积,即最大进气口面积乘航行距离再乘以星际气体密度。但此类系统和所有的冲压系统一样,无法在低于某个速度的情况下使用,实际上这个临界速度约在光速的十分之一到十分之二之间。因此必需使用其它型态的推进系统作为第一节加力器,让太空船达到启动冲压推进系统的临界速度。再者这类系统也无法减速,而其所达到的超高速度也让使用他种系统减速十分困难。
          最后,这类第二种推进形式的系统因其不需要携带燃料(不考虑加力器燃料),因此不能使用火箭速度公式,必须使用另外的动量守恒公式。故在此不能用前面的标准太空船公式计算最终速度。就理论上而言,最佳喷气速度为光速的冲压喷射系统(即正反物质反应系统)所能达到之巡航速度等于装载了冲压系统航在线能吸入的所有星际气体的质量的反物质火箭所能达到的速度。但由于星际气体是正物质,因此最佳喷气速度不可能等于光速。
          若以核融合动力之喷气速度来看,则此类系统的效率将远高于第一种推进型态的核融合火箭系统,其可以用相同的质量比达到更高的速度。重点就是其完全不需要携带燃料,飞行越久吸入的星际气体就越多,故质量比也就越高。换句话说其最终速度乃视其飞行时间而定,属于一种变动质量比甚至是质量比近于无限大的系统。理论上是唯一可以进行永恒推进的系统(其它推进系统虽然也可以永恒飞行,但无法永恒推进)。因此此类系统乃是目前理论上能够最接近光速的系统。


        IP属地:江苏6楼2013-09-12 15:29
        回复
          当然,一切能量源还是免费的,这就是最大的重点。另外需要一提的是增加对光帆的输入和光帆接收能量不衰减的距离是一体两面的,只要聚光能力加强两个都可以加强,但就光帆而言,其输入是有上限的,过大的输入会烧毁光帆。因此聚焦能力超过一个限度后(实际上很容易就会超过),便会在光帆船于近距离时将聚焦光线输出减弱至光帆能够承受的安全系数内,而光帆远离时再逐渐增加输出以弥补距离拉远时的散射损失,以此来将光帆的推力(即能量输入)维持在一个定值。
            另外聚焦用的太阳能板阵列则没有烧毁问题,由于不需要长距离高速移动,它可以作的较厚,同时也可以增加面积与数量等来增加输出。基本上聚光板是没有性能的限制的。而光帆的能量承受安全系数亦是光帆的性能值的一个重要参数。
            主动发射则是由人工放射能量光束进行冲击推进,这种方法需要付出的成本较高,重点是在建立光束发射站,发射光束来照射光帆使其获得推力。与纯粹的太阳光聚焦站不同的是这种光束发射站可以自由挑选所使用的光束波长,不同于聚焦站只能纯粹的聚焦日光。当然,光束发射站的能量来源也可以使用太阳能,如此同样没有燃料费的问题,但是在建造与维护成本上显然会比聚焦站的太阳能反射板高上许多。
            光束发射站的一个使用时机是在远地星球上的运用,比如建立在木星上。太阳能聚焦站必须靠近太阳才行,但是光束发射站却可以远离太阳。当然此时就无法运用太阳能而必须使用核融合发电来作为动力来源了。这会使成本增加,不过这是要在远地行星运用光压系统所必须付出的代价。
            由于可以自由选用光束波长(一般是在建立发射站时就决定波长,可调频的光束发射站则会在设计时有一波长范围限制),因而可以控制光束发射天线的面积与光帆的面积,甚至可以控制光帆的重量。这类系统通常有较聚光站有更佳的聚焦能力,因为他能够调整波长因而能够照射的更远而不衰减。但在长距离照射下仍然有一些问题存在。
            基本上光帆的能量转换效率主要有两个参数影响,一是太空船速度,另一是光线聚焦能力。就光帆而言,光束直径小于等于帆面直径时,所有能量直接投在帆面上,此时光线会被反射与吸收。但在太空船速度低时,入射光线以反射为主,而反射产生的能量传递效率是很低的。
            而太空船速度一旦加到接近光速时,光线与太空船之间的都卜勒效应便会急遽增大,光线由偏向反射变为偏向于吸收,能量传递效应就会增加。因此太空船速度越大,能量吸收效率就越高,从接收的能量中所获得的加速度就越大。但在距离一远,光束直径大于光帆的直径时,能量便不是完全投在光帆上了,此时就会有光束扩散的能量损失。这个损失与太空船与光源距离的平方成正比。而要减少这种损失就必须增加光束的聚焦能力。或者采用暴力法,直接在远距离时增加输出以弥补散射的损失。
            以上两点跟聚光站是一样的,但就第二点而言,由于增加光束发射站输出的困难度与成本远较聚光站的纯粹增加反射板高,因此就光束发射站而言,采用第二种方法很容易不符合成本,因此仍将以增加光束聚焦能力为主要手段。需注意的是这里的「能量光束」并非单指可见光范围的光线而言,而是在长到公分波,毫米波等级的电磁波束到波长极短的硬X射线光束范围内,这就是可挑选波长的光束发射站的优势了。
            一般来说,光束波长短则聚焦能力越强,所使用的发射天线面积也就能够越小。比如若使用硬X射线这种极短波长的光束,则发射站的天线口径可能只有数百公尺到数公里。波长一长则天线口径就会越大。但波长不是越短越好,还需要光帆的配合,光帆是否能够吸收该波长的光束,或者此种光帆是否能作的很薄很轻,这些都是考量重点。同时短波长不一定保障能缩小天线口径,因为若是发射能量固定,则口径越小发射天线表面的能量密度就会越大,甚至有可能大到光束发射瞬间就烧掉发射天线,因此天线口径还是有下限的。比较可能的是用较长波长的光束,并使用天线阵列群来达成大孔径的需求。
            另外波长一长,帆的重量便有可能降低。因为光线在碰到孔径比其波长短的金属网格时会完全反射,跟碰到没洞的金属板效果是一样的。一般家庭的微波炉便是运用这种效应让人能够看到加温中的食物(不过还是建议大家别去看),使用波长较长的微波或是毫米波光束,则便可使用由金属细丝织成的网状光帆,如此不需要特别技术便可自然降低光帆重量。也可以在相同的总重量下增大光帆面积。
            基本上,聚光站将会被运用在近距离的低速的光帆船上,而光线发射站则会应用于远距离的高速光帆船之上。就内太阳系运作或是飞向远地行星任务而言,聚光站是一个相当好的选择。而在远地行星飞向内太阳系(这还必须要抵消太阳的光压)或是往更远的太阳系外层移动则以光线发射站系统为佳。这两种系统算是互补的形式,前者应该会建立在水星以内的太阳轨道上,后者则应该会建立在木星上,从木星提取燃料来运作。
            光压推进系统的最大优点是价格,因为其太空船不需要携带燃料,燃料费用自然就省下来了。聚光站与光束发射站虽然需要建立与维护成本,后者也可能需要燃料成本,但大量运用下来采用此类推进方式系统在价格上会极具竞争力。即使是需要燃料的光束发射站,若使用相同数量的燃料,其能使太空船增加的速度会高于火箭推进系统所能增加的速度。而这类系统的缺点是其太空船的推力方向会受到限制,且在远距离时运作效率会低落,比如要在冥王星周边运作(不是飞向冥王星)效率会降低,其飞行方向垂直于光束时甚至没有作用,且太空船会有一固定的航道而较难作机动。
            聚光式光压系统的另一个延伸概念,是光帆航线与光帆船团。用大量太阳能光板聚光可以产生一条航线。并不瞄准某艘太空船,而只是对准一个方向造成一条光道。任何有装帆的太空船只要进入这条光道便可以获得动力。此种概念将会产生出光帆航线与光帆船团。太空船在进入光帆航线内可以获得光压动力,离开后则使用自备的火箭引擎推进。这也是一个节省燃料的方法。
            第三种推进形式的另外一个概念便是磁压推进系统。它和光压系统相当类似,不过利用的是太阳的磁场。太阳会放出太阳风,这是一种流动的电浆,电子与质子气体,其速度约为每秒五百公里。因此若用超导体线圈造出一个环状的电磁场帆便可以让太空船乘著太阳风飞行。
            磁帆的组装与操作皆较为简单,只要把圆圈型超导电缆通上电流,它就会受磁力而自动膨胀成完美的圆形。打开电流开关则磁帆便可乘太阳风风推进,不想推进时只要关掉开关即可,不像光帆还需要收帆或改变角度。不过磁帆需要使用大量高温超导体,而这目前仍在研究。磁帆本身的性能也只有一些理论上的探讨。基本上磁帆在接近太阳的地区如近地行星带中效率较好,可能会比光帆好些,端视高温超导体的发展而定,在远地行星则效率降低。再者前面使用微波光束照射的网格状太阳帆若是部份采用高温超导体制造,则同时亦可有磁力推进的效果存在。


          IP属地:江苏8楼2013-09-12 15:33
          回复

            第六节 三种推进形式系统的比较
            关于各式推进系统的简单介绍到此为止,接下来则来探讨各种推进系统的可能运作情况。就第一类推进系统而言,化学火箭仍会是短时间内主要动力源之一,即使核能火箭开始运作,初期仍是要靠化学火箭来作地球表面至绕地轨道间的举升运载。但就行星间太空航行而言,化学火箭十分不经济,因此将会很快的被更佳的系统取代。
              核分裂电推力火箭技术难度与受控核融合火箭相比并不高,同时此类核电动力系统已累积大量的运转经验,因此有可能在短中期内成为主流,而核分裂的热推力火箭目前则是卡在环保问题以及政治问题上。实际上若是没有政治因素的影响,这类系统现今应该已经发展成熟并大量运用中。但既然已经拖延到现在,则可能会还没正式上台便结束其生涯。因先进的核分裂热推力系统之概念(气态核心炉)与核融合系统相当类似,同时核融合系统的能量效率又远较其为高,而构造简单的核融合脉冲推进系统又是可以立即上马,又没有核分裂系统的污染及辐射屏蔽问题,因而完全可以轻易击败核分裂热推力系统。再加上核分裂系统所用的燃料铀与钸等价格又较贵(藏量较少之故),因此很有可能会直接跳过核分裂热动力系统直接使用核融合脉冲推进系统。
              至于受控核融合推进系统则由于受控核融合尚未发展完成,同时即使发展完成,想成熟到能够装备至太空船上仍须一段时间,因此中期仍然应以核融合脉冲推进系统为主。不过长期下来,受控核融合系统仍然会成为主流,这是因为其比冲值较高的缘故。再者受控核融合的发展同时还有提供太空飞行以外一般能源的目的。
              核融合脉冲喷射则是为了太空飞行而发展的方法,并不适合用于作为供应一般能源的发电使用。目前受控核融合虽然也有以雷射爆缩的惯性拘束研究,但用在发电上系统的复杂度将不下于托卡马克的磁场电浆拘束系统,且输出功率也会较低。目前的雷射爆缩研究目的与其说是为了用来发电作为能源供应,不如说为了军事用途的核爆研究。
              不过即使是受控核融合系统普及之后,核融合脉冲推进仍然会以其极为简单的结构,相当大的推力与较低的系统故障率与价格而能占一席之地。特别是中小型的太空船就很可能会选择使用脉冲推进系统来作为推力源。象是百吨级或是千吨级的区间联系船,小型人员运输船,中型探测船或是区间太空战斗机,甚至是大型飞弹等都很可能都会使用此类系统。至于星际冲压喷射系统,则除了超长程恒星探测船外没有其它的市场,因而其进一步研究发展可能要再拖下去了。
              而第三种推进形式的的光压与磁压推进系统则具有极大的潜力,关键乃是在于价格方面。比如前文举的太阳光压系统一光秒距离加速的例子与核分裂动力火箭相比,两者间的巨大区别是火箭系统可能仅在几分钟内便可达到此一最高速度,但需要支出庞大的燃料成本,就核分裂引擎的标准太空船而言是一千吨富铀的价格,推进系统本身的造价尚未计算在内。而光帆系统则需要加速九天半,但是一毛燃料费用都不用花,只要太阳不熄灭就成。
              而光帆本体的价格则很便宜,从金属薄膜,凯夫勒纤维镀金属甚至网状材质等都有,总之能比一千吨的富铀贵的材料似乎并不多。再者核分裂火箭的这一千吨富铀(或者是核融合火箭的氦三或氘)都是会在飞行中消耗掉的。而聚光站与光束发射站都可以重复使用,因此价格可以分摊下来,实际上建造这些系统的成本并不比铀矿的开采与提炼设施贵多少(运费除外)。
              另外光帆可以重复使用,也可使用一次就丢掉,端视需要而定。换句话说,光帆的消耗性能量主要来自太阳,而这价格极低,其它推进系统的消耗性燃料在这方面无法与之竞争。但光帆系统的航道与机动远不及火箭系统,因此在行星间航行与输送中光帆系统将会是主要的「辅助动力源」。也就是同时装备火箭系统与光帆,有点象是装了蒸汽引擎的帆船,或者是装了帆的蒸汽船之类的。
              虽说是辅助动力,但可能是整个航行中一半以上到90%的能量是由光压提供。火箭系统仅于紧急时使用,或作为停车靠泊与航道修正时的辅助动力。但有个例外,军用舰艇不可能以光帆为主要动力,至少在战争时不可能,因为光帆系统的航道十分固定容易被预测,且体积,或者说是面积庞大,非常容易被侦知与破坏。因此在战斗舰艇上应该是以核融合推进为主要动力,另预留搭载光帆系统的硬点支架以于平时的训练任务中搭载光帆以节省燃料,或者作为出港时舰艇的加力器。
              当然在战时作为加力器用途的光帆将会在以其增加到一定速度后抛弃。这类一次使用性的光帆可以做的厚一点,在推进时以高功率光束照射以在短时间内获得最大推力。当然这样很可能会烧毁光帆,不过既然是一次性使用这就不重要了。所以光帆算是太空战舰的副油箱,可以增加其巡航半径与巡航速度。就地球上的类比而言,光压推进系统相当类似于地球上的铁道系统或是海运系统。具有廉价大量运输的特性,但机动性与加速度(并非速度)远低于汽车与空运体系。另外光帆或是磁帆亦可做为太空船的减速系统,就是光压煞车或是磁压煞车。运用这两种系统来煞车可让太空船的巡航速度立即提升一倍以上。这在后文将会提及。


            IP属地:江苏9楼2013-09-12 15:33
            回复

              第七节 太空航行原理与一些初步概念
               所谓的航行不外乎是从一个地点移动到另一个地点。以太空航行而言,就是轨道转移的动作。从某个星球的轨道航行至另一个星球的轨道,或是从同一个星球的低轨道移动至较高的轨道,这种轨道转移的航行路径轨迹被称之为「转移轨道」。
                转移轨道有无限多条,但消耗能量最低的只有一条,被称为「霍曼转移轨道」,乃是由霍曼首先计算出来。霍曼转移轨道是相切于两个出发点和目标轨道的椭圆轨道,并且是两个星球在「合点」的时候才会出现。行星间的重要关系位置有两种,其一称为「冲点」,亦即两个行星位于太阳的同侧,乃距离最近的地方。其二是两个行星分别位于太阳的反对侧,是二行星间距离最远的时候,这个位置关系称为「合点」。
                基于星球运动与太空飞行原理,两个行星间航行消耗能量最低的是在距离最远的合点的时候,而非距离最近的冲点的时候,这是因为行星本身的运动速度与行星轨道上的恒星重力势能的影响。冲点虽然距离近,但由于飞行时必须先抵销行星的公转速度,因此消耗能量是最高的一种。
                霍曼转移轨道飞行需要在行星相对位置达到合点的时候,但行星间并非天天都在合点,比如地球和火星的合与冲每两年两个月一次,所以我们说朝向火星的发射窗口开放周期为两年两个月一次。
                霍曼转移轨道虽然是最节省能量的轨道(需要达到的速度最低),但并不是飞行时间最短的轨道。如果拥有足够强力的推进系统,则可以付出消耗更多的燃料为代价,走其它转移轨道更快的抵达目标,换句话说就是直接飞向目标。这种能力凭化学火箭是办不到的,必须要使用大推力与大功率的先进核分裂火箭(气态核)或是核融合推进系统才行。
                一般而言,是否值得消耗燃料进行快速航行端视需求而定。比如说海运的货物和空运的乘客显然是基于不同的需求,付出不同的成本来选择不同的运输方式。再者,在这些转移轨道中,会有几条自由返回轨道。所谓自由返回轨道便是在飞行中途发生事故必须放弃飞行时,能够返回出发点行星的轨道,这必须谨慎选择轨道与出发速度才行。如失败的阿波罗十三号便是走自由返回轨道才能在中途放弃任务后返回地球。除了这些轨道转移动作的注意事项外,其它的航行原理就较为简单了。
                太空船航行的运动原理乃是基于惯性定律。在一开始就提过,太空中没有阻力(其实是有,不过低到可以忽略),因此任何火箭想要煞车则必须消耗携带的燃料逆向喷射来减低速度,而前文提及的火箭公式中的最终速度则是指引擎全开到燃料消耗完毕所能达到的速度。因此前面的标准太空船的最高速度指的全都是太空船进行单程任务,无法回航甚至无法减速的速度。如果想要煞车,则最高速度必须减半。
                简单的来说,加速一个物体到某个速度与在将其速度减为零消耗的能量是相同的,只不过方向相反而已。换句话说这是一个矢量的概念。当然就火箭系统而言,由于燃料的消耗让总质量降低,因而使加减速时消耗的能量并不相同,但实际上,以同样的燃料想要减速停止,则速度仍然会降低成单程最高速度的一半。而这种程加减速的情形仅会出现在朝向一个目标港口航行的情况下,若是想要在出发后能减速停止并返回母港,则根据同样的原理,速度将会掉成原先的单程最高速度的四分之一。而这个速度就是实际上的实用最高速度,同时也是实用巡航速度。
                当然如果能出发到另一个港口补充燃料,则可以用两倍的燃料让实用最高速度达到单程最高速度的二分之一。如果想自行携带全程燃料达到相同的速度,需要携带多少燃料?各位读者不妨自己运用火箭公式计算一下。在此我们将不考虑这种情形,而以单程最高速度的四分之一当成实用最高与巡航速度。
                在太空中是无所谓省不省油的,你加到某个速度后关掉引擎,则太空船仍然会依惯性等速前进,因此其理论航程是无限的。但由于成员需要的消耗品如空气食物水等需要补给,因此太空船仍有一巡航时间,不考虑加速时间的话,这个时间乘上实用巡航速度便是该太空船的实用行动半径。简单来说,这跟核子动力船只与有点类似。
                核子动力船舰的行动半径并非受限于燃料,而是受限于食物等补给品与成员的心里问题。另外若能用光帆或磁帆作减速需求,则可以减少甚至不需要考虑减速会消耗的燃料,如此一来同样燃料携带量的太空船便可以达到两倍的巡航速度。但先决是要朝向太阳或是光源站航行,且使用的光帆重量不可超出原先减速用燃料的重量。
                基于相同的原理,太空船一般都会装备多具引擎。太空船的最终速度和引擎的推力与数量毫无关系,只和燃料有关。即使是仅装备一具低推力引擎,花费较长的时间去喷射燃料则仍然能达到相同的推进速度。以装备两具引擎的太空船而言,若其仅开启一具引擎则推力与加速度将降为一半,但燃料消耗速度也降为一半,因此加速时间为两具引擎的两倍。相乘之后所达成的最终速度是相同的,因此乍看之下似乎没有必要装备多具引擎。
                但问题在于太空中毫无阻力,如果飞行途中发生引擎故障的事故导致丧失推力,则太空船将会持续永恒的飞行下去。想要拯救引擎故障的太空船是极端困难的,这与地球上的情形完全不同。在地球上若是航行器引擎故障,则航行器必定会因为空气或水的力而停止。若是乘客没有在迫降中伤亡,又不是迫降在恶劣地点如喜马拉雅山脉中的话,则至多在数天之内便会获得救援。但在太空中毫无阻力,丧失推力的太空船无法停止,又由于宇宙空间的巨大距离以及火箭系统的理论限制,因而会使拯救工作相当困难且耗费庞大。这是因为救难船必须以更高的速度,至少必须是两倍以上,才能够在第一艘太空船飞行时间两倍之内追上去拯救遇难船舰。太空船距离基地越远,救援来到的时间就会越迟,若太空船已飞行一个月而引擎故障,则两倍速度的救难船会在发出求救信号后一个月才能抵达。且救难船将消耗大于两倍的燃料。若是救难船增加速度欲更快抵达,则所消耗的燃料便会增加的更快,导致必须付出大量的燃料成本。
                根据火箭公式,当太空船最终速度(单程)大于推进系统的喷气速度的时候,则任何微小速度的增加便会大幅增加质量比。当然在使用先进推进系统如核融合推进系统之时,一般的民用太空船之飞行速度由于经济上的考量,将不太可能超过其喷气速度。但是军舰则由于需要追求速度,便有可能发生此种情形。特别是追求高速的轻型军舰有可能在引擎发生故障后无法救援回收。因此追求高速的轻型舰反而较可能装备多具引擎,以避免因为引擎故障而完全失去动力的情况。
                附带一题的是,多引擎太空船的喷射口必须是成对对称于质心切线,一旦一具引擎故障或损坏,则必须同时关闭对称的另一具引擎。否则推力力矩将会造成太空船的旋转,欲使用姿态控制引擎修正此旋转力矩将会消耗大量燃料,是十分划不来的事。
                另外,太空航行的基地与目标不外乎以下几个,环地球轨道,环月轨道,环火星轨道,两个拉格朗日点L4与L5,小型星外围某处,环木星轨道等。这是以太阳系中的重点为主。地球与月球不用说了,火星的地位也相当重要。月球基地或许会比火星较早建立,但人口成长较快,发展较快的将会是火星而非月球。因为火星具有大气,有较好的农耕与生活条件,加上距离主要矿场与工厂的小行星带较近,可以就近供应燃料,食物与水,因此其人口增加速度与移民速度将会较高。
                小行星带除了是矿场地带之外,应该也是主要的浮游工厂位置。这是因为太空中原料运输成本(必须用太空船运输)远比能量运输(可用光束传输,甚至可能就地开采,即使用运输供给,氘与氦三等融合原料无论如何还是比金属轻很多)来的高,再加上一般而言产品的重量会比原料矿石低,虽然空间可能比较大,但是太空运输的问题在于质量而非空间,运输重量较低的产品可以减低成本,因此工厂应该会朝向原料产地集中。
                而太空殖民地的原料则可能先在小行星的浮游工厂生产出半成品的各种模块,再拖运至拉格朗日点组装。至于货柜船,邮轮,运输舰,油轮甚至是战舰则可能直接在小行星带的浮游工厂建造,因为那里有所有需要的原料。浮游工厂可以在无重力高度真空的环境下,生产出地球上不可能生产的极优良的产品与材料。如果需要重力的话,则可由旋转的离心力造出人工重力。
                例如一绕轴心旋转的扁圆型工厂,在圆周部份具有最大重力,旋转轴心部份则是零G,可依需要生产不同产品,甚至可将生产线串接起来,在不同的加工程序中可以运用最适当的重力要求环境。
                环木星轨道上则应该是主要的太空船燃料产地,应有轨道浮游工厂抽取提炼融合原料,再者由于燃料丰富,此地也该是主要的外太阳系与其它恒星系的长程探测船的基地,同时会有很多科学家聚集在此进行研究。
                L4与L5两个拉格朗日点的太空殖民地与太空城市则应该是太空航行的集散与转运中心,地位当如同今日的香港与新加坡,这两个地点的先占权争夺可能会引起相当的冲突。另外需要一提的是水星内侧的环太阳轨道将会有大规模的太阳能发电系统以及用以作光压推进的聚光站。能量将以微波的方式传送给地球,月球与太空殖民地。这些能量供应站应当具有相当高的自动化程度,仅需要最少人力便可操作。这个地区的能量站提供大量廉价的能源,具有重要的战略地位,但并非无可取代,至少受控核融合发电便可以取代之,虽然必须付出较高的价格。
                较重要的应该是往木星的航线,那应该是主要太空船燃料的供应地。不过即使这条航线中断,地球仍然可以由大海中提炼融合燃料重氢,月球也有相当大的氦三存量,而火星的氘蕴藏量则是地球的五倍。换句话说,往木星航线中断并非是致命性的,而仅只是稍微提高能源价格而已。真正具有无可取代的最重要战略地位的应该是原料产地与加工地的小行星带外围某处,这里的存废将会直接影响工业产品以及军事产品的质与量。另外地球本身,以及火星在粮食产量达到一个程度后基于粮食的需求应该也是战略要点。
                再者,还有一个特殊的地方,在距离太阳约 800AU的地方是太阳的重力焦点。自无限远方的宇宙来的平行光束经由太阳的重力偏转,将会聚焦在这个距离上。换句话说,在 800AU的虚拟天球表面上等于有一个与太阳直径相同的超级口径的天文望远镜。这种解像力足以使其能够详细观察数十亿到上百亿光年外的银河与宇宙边缘的细部结构,因此这里将是天文学家的天堂,不过这跟一般人的关系并不大就是了。
                就一般而言,太阳系内的太空航行应该是这些点之间的联系,在太空开发初期,大多数的运输能量将被用于运载工作母机与能源,以能在太空建立初期生产能量,一旦生产能量建立,大规模行星间运输能量将会成指数成长。发展到极盛时期,真正的运输动脉应该是小行星带的工业产品运输通路,地球的粮食运输通路与月球,火星或木星的能源运输通路。就乘客运输而言,会采取高速取向,在能够接受的成本内尽量以最高的速度来运输乘客,即使用快速运输舰。而对于产品与原料的运输,则应当是采取能源节省取向,以大规模,低能源消耗与长时间的型态来运输,即重型货柜船。而能源(特别是火箭燃料)则以介于两者之间的速度来运输。
                至于往其它恒星系的航行探索则并不在本文讨论范围内,将来若有可能的话再另行撰文讨论之。


              IP属地:江苏10楼2013-09-12 15:34
              回复
                这篇文章碉堡了!!!科幻吧就是需要这种有强大理论基础,严格逻辑推理的文章!!!该文章的内容基本可以作为太空科幻作品的战争模型基础参考了。收藏!!!


                13楼2013-09-16 20:53
                回复


                  14楼2013-09-16 20:54
                  回复


                    IP属地:江苏来自Android客户端15楼2014-01-20 17:48
                    回复
                      硬科幻贴,力挺。不是水哈


                      IP属地:贵州16楼2014-01-20 20:55
                      回复
                        怒赞


                        IP属地:北京来自Android客户端17楼2014-01-20 21:40
                        回复
                          后面还有一部分。。。


                          IP属地:山东来自Android客户端18楼2014-01-21 13:22
                          回复


                            IP属地:浙江19楼2014-04-19 15:36
                            回复