数学吧 关注:894,310贴子:8,762,052
  • 2回复贴,共1
如图,在△AOB中,∠AOB=90°,OA=OB=6. C为OB上一点,射线CD⊥OB交AB于点D,OC=2. 点P从点A出发以每秒√2个单位长度的速度沿AB方向运动,点Q从点C出发以每秒2个单位长度的速度沿CD方向运动,P、Q两点同时出发,当点P到达点B时停止运动,点Q也随之停止. 过点P作PE⊥OA于点E,PF⊥OB于点F,得到矩形PEOF. 以点Q为直角顶点向下作等腰直角三角形QMN,斜边MN‖OB,且MN=QC. 设运动时间为t(单位:秒).
(1)求t=1时FC的长度.
(2)求MN=PF时t的值.
(3)当△QMN和矩形PEOF有重叠部分时,求重叠(阴影)部分图形面积S于t的函数关系式.
(4)直接写出△QMN的边与矩形PEOF的边有三个公共点时t的值.


1楼2013-05-06 18:42回复
    解析几何完胜!!!o是原点ob为x轴,oa是y轴,c(2,0)a(0,6)b(6,0)


    来自手机贴吧2楼2013-05-06 19:39
    收起回复