皮亚诺公理
皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。 皮亚诺的这五条公理用非形式化的方法叙述如下: ①1是自然数; ②每一个确定的自然数a,都有一个确定的后继数a' ,a' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等); ③如果b、c都是自然数a的后继数,那么b=c; ④1不是任何自然数的后继数; ⑤任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n' 也真,那么,命题对所有自然数都真。(这条公理也叫归纳公设,保证了数学归纳法的正确性) 注:归纳公设可以用来证明1是唯一不是后继数的自然数,因为令命题为“n=1或n为其它数的后继数”,那么满足归纳公设的条件。 若将0也视作自然数,则公理中的1要换成0。
皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。 皮亚诺的这五条公理用非形式化的方法叙述如下: ①1是自然数; ②每一个确定的自然数a,都有一个确定的后继数a' ,a' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等); ③如果b、c都是自然数a的后继数,那么b=c; ④1不是任何自然数的后继数; ⑤任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n' 也真,那么,命题对所有自然数都真。(这条公理也叫归纳公设,保证了数学归纳法的正确性) 注:归纳公设可以用来证明1是唯一不是后继数的自然数,因为令命题为“n=1或n为其它数的后继数”,那么满足归纳公设的条件。 若将0也视作自然数,则公理中的1要换成0。