玩转数学8吧 关注:1,596贴子:27,162

高数高频易错点(倾情奉献)

只看楼主收藏回复

1.求极限请注意自变量趋向什么。我们知道:lim(x趋向0)sinx/x=1,但是当x趋向无穷limsinx/x=0,原因:无穷小量×有界函数=无穷小量。这里:|sinx|<=1,1/x是无穷小量。再次重申:请注意x趋向什么。


IP属地:湖北来自手机贴吧1楼2013-01-14 09:53回复
    2.请注意当题目说:x趋向无穷时,那么题目包含两个意思:x趋向正无穷和x趋向负无穷。在含有e^x,arctanx,等等类的题目时,请看清楚x趋向无穷还是趋向正无穷或者是负无穷。补充:在含有绝对值的题目时,这点尤其重要,如果说x趋向无穷,那么在去||时,必须考虑|x|中x是趋向正无穷还是负无穷,当然题目不一定非要以绝对值出现,有些题会以√(x^2)出现。


    IP属地:湖北来自手机贴吧2楼2013-01-14 09:54
    回复
      2025-06-18 23:16:16
      广告
      3.关于极限的保号性。若 lim f(x)=A , A>0或(A<0),则存在δ>0,当x取x0的δ去心
      x->x0 邻域时,f(x)>0(或f(x)<0)。这是最原始结论:如果结论中不取去心邻域,那么结论是错的。比如举例分段函数:当x=0时,f(x)=-1,当x不为0时,f(x)=x^2+1,显然lim(x趋向0)f(x)=1>0,然而并不满足f(x)>0(在x=0处)。介绍这个定理的作用:解一类题。请看:已知f(x)可导,且当x趋向0,limf(x)/|x|=1,判断f(x)是否存在极值点。 因为f(x)可导,那么f(x)必连续,因为lim(x趋向0)f(x)/|x|=1这个极限存在且为1,那么我们得到结论:lim(x趋向0)f(x)=0,否则不会存在极限的,又因为f(x)连续,那么f(0)=0,令f(x)/|x|=g(x),根据保号性,因为limg(x)=1>0,那么:g(x)>0,那么由于|x|在x趋向0时>0,所以f(x)>0,而0=f(0),所以f(x)>f(0),根据极小值的定义,x=0为f(x)的极小值点。 ★综上:已知limg(x)=a,a的正负已知,可以使用保号性。


      IP属地:湖北来自手机贴吧3楼2013-01-14 09:55
      回复
        4.关于极值点的3种判别法:■法一:定义法;■法二:若f(x)可导,f'(xo)=0,且f’’(x)不为0,则f(x)在xo处取得极值,若二阶导<0,取得极大;>0,极小。法三:(n阶判别法):若f'(xo)=二阶导(xo)=…=n-1阶导(xo)=0,且n阶导不为0,若n为偶数,且n阶导>0,极小,反之,极大;若n为奇数,n阶导不等于0,则(xo,f(xo)为拐点,xo不是极值点。证明:略


        IP属地:湖北来自手机贴吧4楼2013-01-14 09:56
        回复
          6.等价无穷小只能使用于乘除(题外:其实它可以使用于加减的,这里不说,以防混淆)。比如:初学者可能会认为这个极限为0,lim(x趋向0)(tanx-sinx)/x^3=0[计算思路:(x-x)/x^3=0],事实上它等于1/2.原因:提取tanx后等价无穷小。等价无穷小必须自己去背的,没有人可以帮你。


          IP属地:湖北来自手机贴吧6楼2013-01-14 09:57
          回复
            7.对隐函数求导的问题很多同学搞不清楚。错误一:把变量当做常量。比如:y=x^x,标准解答lny=xlnx,两边对x求导,y'/y=1+lnx,所以y'=(x^x)(1+lnx)。错误做法:y=x^x,y'=x(x^(x-1))=x^x。(但愿你们找到了错误在哪),错误二:搞不清楚对x求导是什么意思。当然:y=x^2求导大家都会吧,y'=2x,当出现对y^2=x^2,很多同学就迷茫了,我们说y是x的函数,所以最后必须乘y',对y^2=x^2求导,得到:2yy'=2x.再则:对隐函数求导我们把其中一个看成常量,比如y=yx+x^2,那么求导:y'=y+y'x+2x。★综上:对隐函数求导,若是单独y,求导为y',一切关于y的函数(比如y^2,lny,a^y等),先对这个函数求导再乘y'.


            IP属地:湖北来自手机贴吧7楼2013-01-14 09:58
            回复
              分享!@小天使de梦想 @pure潇 @人的伪虚1010 


              IP属地:广东来自手机贴吧8楼2013-01-14 10:42
              回复
                8.参数方程二阶导问题(无数不懂事的孩子搞不清楚),我们说一般地,y''表示对x的二阶导数,不是对参数t的二阶导数。y''=d^2y/dx^2=[d(dy/dx)]/dx,对于求dy/dx,我们采用求关于t的y’(t),和关于t的x'(t),因为dy/dx=(dy/dt)×(dt/dx)=y'(t)/x‘(t)。举例:已知y=cost,x=t^2,那么求dy/dx,d^2y/dx^2。标准解答:1:y'(t)=-sint,x'(t)=2t,所以dy/dx=-sint/2t;2:d^2y/dx^2=d(dy/dx)/dx={d[(-sint)/2t]}/dt * (dt/dx)=(-tcost+sint)/(4t^3) ………★综上:二阶导是一个整体记号,不是简单的除法。


                IP属地:湖北来自手机贴吧9楼2013-01-14 13:46
                回复
                  2025-06-18 23:10:16
                  广告
                  . 9. 请你搞清楚一个问题:可导与连续是完全不一样的。有些同学看到题目说某个分段函数在某点xo连续,特别开心,他说易得:左导=右导=f(xo),你太天真了。其实:连续是说左极限=右极限=f(xo),可导是:lim(x->xo)f(x)=f(xo),且左导=右导。请搞清楚你要处理的问题。不要学了一个学期都是云里雾里,当然一学期没上过一节课的同学,除外。补充:在一元函数微分学中,可导必然连续,连续未必可导(这个显然嘛,y=|x|在x=0处连续但是不可导)。


                  IP属地:湖北来自手机贴吧10楼2013-01-14 16:54
                  收起回复
                    好!


                    来自掌上百度11楼2013-01-14 23:50
                    回复
                      10.函数在某点可导的本质仅仅是该点的问题,与它的邻域无关,也就是说点可导,在中心点的去心邻域内的点未必可导。比如函数f(x)=0 当x是有理数。
                      f(x)=x^2 当 x是无理数。
                      只在x=0处点连续,并可导。按定义可验证在x=0处导数为0,但是除x=0外的一切点均不连续,故不可导,显然去心邻域也不可导.


                      IP属地:湖北来自手机贴吧12楼2013-01-15 17:47
                      回复
                        此贴会火


                        IP属地:湖南来自Android客户端14楼2013-01-16 17:52
                        回复
                          赞一个


                          来自Android客户端15楼2013-01-16 18:22
                          收起回复
                            12.众所周知:无穷小×有界=无穷小,但是:无穷大×有界未必等于无穷大。正确结论:无穷大×有界=未知,比如:当x趋向正无穷,x,x^2始终为无穷大,而1/x,1/x^2为有界量。 注意到:x*(1/x^2)=1/x就是一个无穷小,而x^2*(1/x)=x却是无穷大,而x*(1/x)=1却是有限的。


                            IP属地:湖北来自手机贴吧16楼2013-01-16 22:10
                            回复
                              2025-06-18 23:04:16
                              广告
                              13,很多初学者认为:∫(a到x)f(t)dt中,变量是t,这是错的,你忽略了变限积分的来历,自己去回顾一下变限积分的来历是大有裨益的。记住:这里x是变量,它求导=f(x)。


                              IP属地:湖北来自手机贴吧17楼2013-01-16 23:57
                              回复