安徽14:(2)
根据等差数列性质,得到1/xn = 1/x1 +2(n-1) , xn=1/(2n-1), yn=1/(2n-1)^2
Sn=π/(2n-1)^4,
√Sn =√π/ (2n-1)^2
Tn=√π(1/1²+1/3² + ...+ 1/(2n-1)²)< √π(1+1/(2*3) + 1/(4*5) +...+1/(2n-2)(2n-1)) = √π(1+1/2-1/3+1/4-1/5+...+1/(2n-2)-1/(2n-1)) =√π[3/2-(1/3-1/4+1/5...-1/(2n-2)+1/(2n-1))]<3√π/2