对地球起源和演化问题进行系统的科学研究始于十八世纪中叶,至今已经提出多种学说。现在流行的看法是:地球作为一个行星,远在46亿年以前起源于原始太阳星云。它同其他行星一样,经历了吸积、碰撞这样一些共同的物理演化过程。地球胎形成伊始,温度较低,并无分层结构,只有由于陨石物质的轰击、放射性衰变致热和原始地球的重力收缩,才使地球温度逐渐增加。随着温度的升高,地球内部物质也就具有越来越大的可塑性,且有局部熔融现象。这时,在重力作用下物质分异开始,靠近表面的较重物质逐渐下沉,地球内部较轻的物质逐渐上升,一些重的元素(如液态的铁)沉到地球中心,形成一个密度较大的地核(地震波的观测表明,地球外核是液态的)。物质的对流伴随着大规模的化学分离,最后地球就逐渐形成现今的地壳、地幔和地核等层次。
在地球演化早期,原始大气逃逸殆尽。伴随着物质的重新组合和分化,原先在地球内部的各种气体上升到地表成为第二代大气;后来,因绿色植物的光合作用,进一步发展成为现代大气。另一方面,地球内部温度升高,使内部结晶水汽化。随着地表温度逐渐下降,气态水经过凝结、降雨落到地面形成水圈。约在三、四十亿年前,地球上开始出现单细胞生命,然后逐步进化为各种各样的生物,直到人类这样的高级生物,构成了一个生物圈。
在地球引力作用下,大量气体聚集在地球周围所形成的包层叫大气层。大气随着地球运动;日、月的引力也对它起着潮汐作用。大气层对地面的物理状况和生态环境有决定性的影响。地球大气的质量约占地球总质量的百万分之一。大气密度随高度的增加而下降,大气总质量的90%集中在离地表15公里高度以内, 99.9%在50公里高度以内。在2,000公里高度以上,大气极其稀薄,逐渐向行星际空间过渡,而无明显的上界。
地球大气的密度、 温度、 压力、化学组成等都随高度变化。可以按照大气的温度分布、组成状况、电离程度这些不同参数,对地球大气进行分层。
按大气温度随高度的分布可以分为:
对流层:靠地表的底层大气,对流运动显著。其厚度因纬度、季节以及其他条件而异,在赤道区约16~18公里,中纬度区约10~12公里,两极区约7~8公里。一般来说,夏季厚而冬季薄。对流层与地表联系最密切,受地表状况影响最大,大气中的水汽大部集中于此层,形成云和降水等现象。对流层的上部称为“对流层顶”,厚约几百米到1~2公里。对流层的温度几乎随高度直线下降,到对流层顶时约为零下50摄氏度。
平流层:(又称同温层)由对流层顶到离地表50公里高度的一层,大气主要是平流运动。层内温度随高度增加而略微上升,到约50公里高度处,达到极大值(约零下10~零上20摄氏度)。
中间层:(又称散逸层) 高度在离地表50~85公里的一层,温度随高度增加而下降,到离地表高度85公里的中间层顶,温度接近最小值,约为零下摄氏度。
热层:中间层以上的一层,温度随高度增加而上升,在离地表500公里处,即热层顶,达到1100摄氏度左右。这一层的温度因为大气大量吸收太阳紫外辐射而升高。热层顶以上为外大气层。这里的大气已极稀薄。
按大气的组成状况可以分为两层:离地表约100公里以下是均质层(大气由各种气体混合组成);以上是非均质层。在均质层中离地表10~50公里处,太阳紫外辐射的光化作用产生臭氧,形成臭氧层,这一层的高度大抵与上述平流层相当。在离地表20~30公里处,臭氧浓度最大,不过这部分大气中的臭氧含量仍然不到这一层大气的十万分之一,各种气体依然视为均匀混合的。臭氧层吸收掉危害生命的太阳紫外辐射,使之不能到达地表。
按大气的电离程度可以分为两层:从地表到离地表80公里这一层,大气中的分子和原子都处于中性状态,称为中性层。离地表80~1000公里这一层,大气中的原子在太阳辐射(主要是紫外辐射)作用下电离,成为大量正离子和电子,构成电离层。电离分为4层,这些层的高度和电离情况都随一天中的不同时刻、一年中的不同季节和太阳活动程度而发生变化。许多有趣的天文现象,如极光、流星等都发生在电离层中。