我在本章里要讨论的是数学,并不是由于数学本身的缘故,而是因为它与希腊哲学
有关系——有着一种(尤其是在柏拉图的思想里)非常密切的关系。希腊人的卓越性表
现在数学和天文学方面的,要比在任何别的东西上面更为明显。希腊人在艺术、文学和
哲学方面的成就,其是好是坏可以依据个人的口味来评判;但是他们在几何学上的成就
却是无可疑问的。他们从埃及得到了一些东西,从巴比伦那里得到的则很少;而且他们
从这些来源所获得的东西,在数学方面主要地是粗糙的经验,在天文学方面则是为其非
常悠久的观察记录。数学的证明方法,则几乎是完全起源于希腊。
有许多非常有趣的故事——或许并没有历史真实性——可以表明,是哪些实际问题
刺激了数学的研究。最早的最简单的故事是关于泰勒斯的,传说他在埃及的时候国王曾
要他求出一个金字塔的高度。他等到太阳照出来他自己影子的长度与他的身高相等的时
候,就去测量金字塔的影子;这个影子当然就等于金字塔的高度。据说透视定律最初是
几何学家阿加塔库斯为了给伊斯奇鲁斯的戏剧画布景而加以研究的。传说是被泰勒斯所
研究过的求一只船在海上的距离的问题,在很早的阶段就已经很正确地解决了。希腊几
何学所关心的大问题之一,即把一个立方体增加一倍的问题,据说是起源于某处神殿里
的祭司们;神谕告诉他们说,神要的一座雕象比他们原有的那座大一倍。最初他们只是
想到把原象的尺寸增加一倍,但是后来他们才认识到结果就要比原象大八倍,这比神所
要求的要更费钱得多。于是他们就派遣一个使者去见柏拉图,请教他的学园里有没有人
能解决这个问题。几何学家们接受了这个问题,钻研了许多世纪,并且附带地产生出了
许多可惊可叹的成果。这个问题当然也就是求2的立方根的问题。
2的平方根是第一个有待发现的无理数,这一无理数是早期的毕达哥拉斯派就已经知
道了的,并且还发现过种种巧妙的方法来求它的近似值。最好的方法如下:假设有两列
数字,我们称之为a列和b列;每一列都从1开始,每下一步的a都是由已经得到的最后的
a和b相加而成;下一个b则是由两倍的前一个a再加上前一个b而构成。这样所得到的最初
6对数目就是(1,1),(2,3),(5,7),(12,17),(29,41),(70,99)。
在每一对数目里,2a2-b2都是1或者是-1。于是b/a就差不多是2的平方根,而且每下一
步都越发地与之接近。例如,读者们将会满意地发见,99B70的平方是非常之接近于与2
相等的。
普洛克鲁斯描述过毕达哥拉斯——此人永远是个颇为蒙胧的人物——乃是第一个把
几何学当作一种学艺的人。许多权威学者,包括汤姆斯.希斯①爵士在内,都相信华达哥
拉斯或许曾发见过那个以他的名字命名的定理;那个定理是说在一个直角三角形中,弦
的平方等于两夹边的平方之和。无论如何,这个定理是在很早的时期就被毕达哥拉斯派
所知道了的。他们也知道三角形的内角之和等于两个直角。
除了2的平方根之外,其他的无理数在特殊的例子里也曾被与苏格拉底同时代的狄奥
多罗斯研究过,并且曾以更为普遍的方式被与柏拉图大致同时而稍早的泰阿泰德研究过。
德谟克里特写过一片关于无理数的论文,但是文章的内容我们已不大知道了。柏拉图对
这个题目是深感兴趣的;他在以“;泰阿泰德”命名的那篇对话里提过了狄奥多罗斯和
泰阿泰德的作品。在《法律篇》中,他说过一般人对这个题目的愚昧无知是很不光彩的,
并且还暗示着他自己之开始知道它也是很晚的事情。它当然对于毕达哥拉斯派的哲学有
着重要的关系。
发见了无理数的最重要的后果之一就是攸多克索(约当公元前408-355年)之发明关
于比例的几何理论。在他以前,只有关于比例的算数理论。按照这种理论,如果a乘d等
有关系——有着一种(尤其是在柏拉图的思想里)非常密切的关系。希腊人的卓越性表
现在数学和天文学方面的,要比在任何别的东西上面更为明显。希腊人在艺术、文学和
哲学方面的成就,其是好是坏可以依据个人的口味来评判;但是他们在几何学上的成就
却是无可疑问的。他们从埃及得到了一些东西,从巴比伦那里得到的则很少;而且他们
从这些来源所获得的东西,在数学方面主要地是粗糙的经验,在天文学方面则是为其非
常悠久的观察记录。数学的证明方法,则几乎是完全起源于希腊。
有许多非常有趣的故事——或许并没有历史真实性——可以表明,是哪些实际问题
刺激了数学的研究。最早的最简单的故事是关于泰勒斯的,传说他在埃及的时候国王曾
要他求出一个金字塔的高度。他等到太阳照出来他自己影子的长度与他的身高相等的时
候,就去测量金字塔的影子;这个影子当然就等于金字塔的高度。据说透视定律最初是
几何学家阿加塔库斯为了给伊斯奇鲁斯的戏剧画布景而加以研究的。传说是被泰勒斯所
研究过的求一只船在海上的距离的问题,在很早的阶段就已经很正确地解决了。希腊几
何学所关心的大问题之一,即把一个立方体增加一倍的问题,据说是起源于某处神殿里
的祭司们;神谕告诉他们说,神要的一座雕象比他们原有的那座大一倍。最初他们只是
想到把原象的尺寸增加一倍,但是后来他们才认识到结果就要比原象大八倍,这比神所
要求的要更费钱得多。于是他们就派遣一个使者去见柏拉图,请教他的学园里有没有人
能解决这个问题。几何学家们接受了这个问题,钻研了许多世纪,并且附带地产生出了
许多可惊可叹的成果。这个问题当然也就是求2的立方根的问题。
2的平方根是第一个有待发现的无理数,这一无理数是早期的毕达哥拉斯派就已经知
道了的,并且还发现过种种巧妙的方法来求它的近似值。最好的方法如下:假设有两列
数字,我们称之为a列和b列;每一列都从1开始,每下一步的a都是由已经得到的最后的
a和b相加而成;下一个b则是由两倍的前一个a再加上前一个b而构成。这样所得到的最初
6对数目就是(1,1),(2,3),(5,7),(12,17),(29,41),(70,99)。
在每一对数目里,2a2-b2都是1或者是-1。于是b/a就差不多是2的平方根,而且每下一
步都越发地与之接近。例如,读者们将会满意地发见,99B70的平方是非常之接近于与2
相等的。
普洛克鲁斯描述过毕达哥拉斯——此人永远是个颇为蒙胧的人物——乃是第一个把
几何学当作一种学艺的人。许多权威学者,包括汤姆斯.希斯①爵士在内,都相信华达哥
拉斯或许曾发见过那个以他的名字命名的定理;那个定理是说在一个直角三角形中,弦
的平方等于两夹边的平方之和。无论如何,这个定理是在很早的时期就被毕达哥拉斯派
所知道了的。他们也知道三角形的内角之和等于两个直角。
除了2的平方根之外,其他的无理数在特殊的例子里也曾被与苏格拉底同时代的狄奥
多罗斯研究过,并且曾以更为普遍的方式被与柏拉图大致同时而稍早的泰阿泰德研究过。
德谟克里特写过一片关于无理数的论文,但是文章的内容我们已不大知道了。柏拉图对
这个题目是深感兴趣的;他在以“;泰阿泰德”命名的那篇对话里提过了狄奥多罗斯和
泰阿泰德的作品。在《法律篇》中,他说过一般人对这个题目的愚昧无知是很不光彩的,
并且还暗示着他自己之开始知道它也是很晚的事情。它当然对于毕达哥拉斯派的哲学有
着重要的关系。
发见了无理数的最重要的后果之一就是攸多克索(约当公元前408-355年)之发明关
于比例的几何理论。在他以前,只有关于比例的算数理论。按照这种理论,如果a乘d等
